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1. Introduction.

In computing the variance of a sample of N data points {z;},thc fundamental
calculation consists of computing the sum of squares of deviations from the mean.
This quantity, which for brevity will be referred to as “the sum of squares’ or
simply as “S™", is defined as "

N
S=> (z—2)} (1.1a)

1=l

where
1 N
f: N"—E ixi. (1.1b)

This computation can be easily performed directly by the two-pass algorithm
(1.1) provided that (@) N is small comparcd to the amount of core memory avail-
able and (b) the variance is not too small relative to the norm of the data,

llzlla = (f, 22172 If either of these conditions is violated, however, the situa-
tion changes. If N is large, this approach to computing S may bc unsatisfactory
since it requires passing through the data twice: once to compute z and then again
to compute S. This problem is somctimes avoided by use of the following tcztbook
algorithm, so called because, unfortunately, it is often suggested in statistical

textbooks:

N WA 2
S=Z$?——N(Zx,) . (2)
i=1 =1
This rearrangement allows S to be computed with only one pass through the data,
but the computation may be numecrically unstable and should almost ncver bc
used in practice. This instability is particularly troublesorne when S is very small
compared to [|z]|z, in which case cventhe two-pass algorithm can bcunstable.

In discussing the stability of a numcrical scheme for computing S, a useful
concept is that of the condition nwmberk of the data. This quantity was first
introduced by Chan and Lewis[®] lo gvc a thorough discussion. Briclly,« is a
measure of the sensitivity of S to changes in the data The quantity ku is anupper
bound for the relative perturbation which would occur in the exactly computed
sum of squares if the input data containcd relative errors of size u. J thetruc sum

of squares is S, then x is given by

= ”1“2' (1.3)




It is easy to see that k > 1 and that in genera « grows as the variance dccrcascs.
An error analysis of the textbook algorithm[2] 4iows that the rcintivc crror
in S can be bounded by something on the order of

3Nk?y,

where u is the machine roundofl unit (scc section 6). This algorithm isthercfore
seldom useful, as confirmed by the experimental results of Table 1.

The error analysis of the two-pass algorithm found in scction 6 shows that
the relative error in the sum of squares computed using that algorithm can be

bounded by
Nu + N%2u?2,

The second term in this bound has traditionally becn ignored in error analyses of
the two-pass agorithm as being of second order. But in the casec we are intcrcsted
in here, when N and « are both large, this term can casily dominate. Table 2
shows this happening in practice.

During the preparation of this manuscript, a simple modification of thectwo-
pass algorithm was found by Professor Ake Bjorck which reduces this bound.
Based on the error analysis of section 6 for the standard two-pass algorithm, he
suggested computing*S by

S= :(xf—-)2-%(i(x,-—z))2. (1.4)

In exact arithmetic the second term is zero, but computationally it is a good
approximation to the error in the two-pass algorithm. Notc that (1.4) can aso
.be viewed as the textbook algorithm applied to the data {(z; — z)}. The error
analysis of section 6 shows that therelative error in S computed by (1.4) can be
bounded by

Nu + 4N%u?

This modification adds only N additions and 2 multiplications to the cost of the
two-pass algorithm (already 3N — 2 additions and N - 1 multiplications)and can
be very useful when the data is poorly conditioned. Sce table 3 for some numerical
results.

Of course formula (1.4) is still a two-pass algorithm. For large /N it may
be desirable to compute S with only onc pass through the data. A number of
papers have appcared recently on “updating” algorithms for computing S. These
are algorithms which are based on formulae for adding one new data point to a
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sample and computing the value of S for the combined sample by updating thic
(presumably known) value of S for the original sample. By starting with a sample
of size 1 and applying this formula repeatedly, we get a one-pass algorithm for
computing S for a sample of arbitrary size. Youngs and Cramcr|[é]haveinves-
tigated several such algorithms and have found the following algorithm to bc the
best:

s: -0
T:=x
for j == 2,3,...,,Ndo
T:=T+$j (15)

1
S:=S+..—‘j:r'-—T2.
G—pvE D
This is based on the updating formula

1
S ="S151 + ———(iz;— T1 ;)’ (1.6)
1, J ](]—-1)( J IJ)

where S; ; stands for the sum of squares for the data points z; through z; and 75 5
is the sum of z; through z;. This notation will be uscd throughout.

One imporant characteristic of this updating formula is thatS) ; isformed
from Si,;—1 by adding to it a nonnegative quantitiy. In tactextbookalzorithm
(1.2), on the other hand, S is formed by a subtraction which canlcad to gross
cancellation and even to negative values of S being cornputcd.

In practice the method (1.5) generally performs on alevel comparable to the
two-pass algorithm (1.1). Chan and Lewis[2] present detailcd ciror analyses of
some similar updating methods.

In the next section we present a generalization of thcupdating formulis(1.0)
for combining two samples of arbitrary size. Then in section 3 wedescribe a
pairwise algorithm for computing S which is essentialy still a one-pass alcorithm
but which numerically is often more stable than the standard two-pass algorithm.

2. A General Updating Formula.

The method of Youngs and Cramer depends on an updating formuia which
alows one to compute S for j+ 1 points when given the value of S for j points and
one new point. In other words, we can combine a sample of size 7 with a sample
of size 1 and determine the value of S for the combined sample.

This formula can be easily generalized to alow us to combinc two samplces of
arbitrary size. Suppose we have two samples {z;}™ ,,{z;}"2." 11 and we know
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i-1 i=m+1
m 1 m-+-n 1
Sl,m == E(X| - ;Tl,m)2) Sm—}—l,m—{—‘»n =- z (Izs - n m+l,m+-r;)2-
=1 I=m+

Then, if we combine all of the data into a sample of size m -} n, it can be shown
that

Ti,m+n=Ti,m + Ti,m+n (2.1a)
Sl,m+n = Sl,m+Sm+1,m+n )
m n
Ny , 2.1b
* n(m+n)(mTl’m mt "”””) (210

If we rewrite the latter formula as

2
m m-+n
St,m+4+n=S1,m + Sm+1,m4-n+ n(m + n)( o T1,m— Tl,n'}—m) )

then we see that for m= 1, n = j — 1, this reduces to the formula of Youngs
and Cramer, since S== 0 for any single data point. The form (2.1b) is more stable
numerically, however.

Regardless of what method is used to compute S, thcformulac (2.1) may be
useful in their own right whenever two samples must be combincd. Onepossible

sample can be split up into smaller subsamplcs, and the sum of squaires coinputed
-for each subsample independently using any algorithm dcsircd. The sum of squares
for the origina sample can then bc calculated using the updating formuli .

However, even in the case of a single yroccssor, it is very desirable to compute
S using (2.1). The method (1.5) may be generalized to compute S by processing
the-data in groups of m elements: cornputc the sum of squarcs for cach group using
the two-pass algorithm and then update the global S accordingly. Traditional
updating algorithms such as that of Youngs and Cramer have uscd m = 1.

We have found, however, that thestability of the algorithm iSincreased by
taking m > 1. One can easily sce that the total number of arithmetic operations
performed on the data is minimized by taking m = V/N. We mizht expect that
this choice of m will minimize the resulting error. Although we do not havea
satisfactory error analysis of this algorithm, the expecrimental results of table 4 do
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tend to confirm this prediction. Strictly speaking, with m > 1 thisisnolongera
one-pass algorithm, but we see that only m data values at a time nced to bc kept
In core, and m can be as smal as necessary.

3. The Pairwise Algorithm.

Table 4 shows that choosing m > 1 not only gives more accuracy than using
m = 1, but can actually give significantly more accuracy than thctwo-pass ago-
rithm. This suggests that when computing the sum of squarcs for the subsamples
of size m, we should not use the two-pass algorithm when S is small. Rlather, we
should split the subsample into yet smaller groups. Taking this idca to the limit
yields a pairwise algorithm analogous to the well-known pairwise alzorithm for
computing the sum of N numbers. Let S; ; stand for the sum of squarcs of clements
z; through z;, and let m = [N /2], the largest integer not excecding N/2. Then
the method consists of computing S;,n by first computing S, and S, -3, v and
then combining these by mcans of (2.1). Each of thcselatter quantitics has been
computed by a-similar combination of still smaller subsamples.

The algorithm can be implemented as just described, but for rcasons v/ hick
we will explain shortly it is actually best to perform the pairwisc algorithm in
a somewhat modified manner. Consider the following example with N = 13.
Schematically, we compute from left to right in the tablcau (3.1). Theintermediate
T;; are also computed in a similar tableau for usc in updating the S; ;. The final
value 77 n will be the sum of all the data points as computed by the pairwise
summation algorithm. In practice we can compute from top to bottom in these
tableaux requiring only one pass through the data and using only O(log, N)storage
locations for intermediate results. We require one such location for cach column
in each tableau. The computation for the tableau (3.1) would procecd as follows:

(a) Compute Sj2 and store in S[1].
(b) Compute S3 4, combine with S[1] to get Sj 4, and store this in S[2].
(c) Compute S5, and store in S[1].
(d) Compute Sy, combine with S[1] to get S5 g and then combine this
with S[2] to get S8, which is then stored in S[3].
(e) Compute Sg10 and store in S|[1].
(f) Compute Sjj,12, combine with S[1] to get S 12, which is then stored
in S[2].
(g) Clean-up (necessary when N is not a power of 2):
Combine ;3 with S[2] to get Sg,13. Combine this with S[3] to get 5} 3.
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Alternatively, we can use a stack structure for the temporary locations as is done
in the sample FORTRAN routine given in scction 9.

The final step (gPfour agorithm requiresthe combination of samples of quite
disparate sizes. Such a calculation would be avoided if we adopted the algorithm
as described in the first paragraph of this scction. For the pairwise summation
algorithm, Tsao[4] points out that the corresponding method gives a decreased
“average error complcexi ty” and presents an implementation based on the binary
expansion of N. That stratcgy could be adopted in the present context as well,
but its usefulness here is qucstionablc. We fecl that the small increcase in accuracy
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which might result would be more than offset by the increased work which we
would thus incur. For the updating formula (2.1b), it is desirable to have n=m
whenever possible, since that formula then becomes simply

1
S 2m=S81,m + Smt12m+ %(Tl,m — Ton1,2m)

In this respect, the tableau (3.1) gives the preferable computational scheme. In
fact, the amount of work required to perform the pairwisc algorithm as described
here is not significantly more than that requircd for the two-passalcorithm. An
operation count shows that roughly 2N additions and 5N /2 multiplicationsarc
required, as opposed to 3N additions and N multiplications for the two-pass a-
gorithm. In addition, some bookkceping operations are required to manane the
pairwise algorithm.

Although we are not able to provide any error bounds proving ihesupcriority
of the pairwise algorithm, our expcrimental results have been quite satisfactory.

Some of these results are shown in table 5 of section 8.

5. Extensions.

Often one wants to compute a wcighted sum of squarcs of decviations from
the mean,
N

S = wi(z; — ) (5.1)

i=1
The updatina_formulae (2.1) still hold with only a few minor modifications. L.ct
Wik = Zf___j w;. Then (2.1) is replaced by
. Tl,m+n = Tl,m + Tm+l,m+n
Wi,mgn=Wi,m+Waii,min
w w
Sg,n')z—l-n == Sg,n); +

I,m

Wrn-kl,m—{—n(wl,m + Wm—{—l,m-}- n) (52)
2
Wont-1,m+
X (MTl,m—Tvrl—f~l,m+n) .
Wl,m y

Another quantity which is often of interest is the covariancc of two simples
{z;} and {y;}. For this it is necessary to compute

N

Cin =D (& —2)ui— 7).

=1



If we let Tgfz = Ef=jx.-, T§ﬁ=2f=jy;, then the updating formula for C is

Clim4-n=Clm+ Cnt1,m4n+ ;(—":n_I—_—;l—)
(5.3)

X (n (=) o) (7 iy 7(v) \
\m I,m ™ 4 m41, m-}—n}\mllm L mt1, m+n}'

6. Error analysis of the two-pass olgorithms.

We assume throughout our error anayses that wc are dealing with a machine
with a guard digit and relative precisionu. On a base # machine with a ¢ digit
mantissa and proper unbiased rounding, u = $g1—%.

Roman letters with tildas over them will be used to denote quantitics ac-
tually computed numerically. The same letter without a tilda will indicate the

corresponding exact--quantity.
In this section we present error analyses for both the standard two-pas: ago-

rithm (1.1) and Bjorck's modification (1.4). Let
N

Sy = Z(x" - 5)2;

i=1

S=5 —5.

The standard two-pass algorithm is S;. We first compute a value % for the
mean of {z;}. If this is computed in the standard manner wc have

N
F=— };‘ L+ &),  with |&] < Nu 4 O(u?), o)

The computed value Sj is then given by
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& =Y (@ — 221 +n), Il <N+ 2)u+ O
— Z((Xi — 7). (5—.%)) (1. m)
=Y (w2t 2m—DE—H+E—)0+n) gy

=S+ ) (ei—2)m— %(Z -’E.'Es) Y (@— ) (14n,)
2
+ (—;—,—Zﬂfi) (N + Em)-

The O(u?) terms in the bounds for |n;] and |¢;] turn out to be unimportant in the
present error analysis and will be dropped below. Note that ) (z;— Z)==0 and
that the following inequalities hold:

< Slinllo < SN + 2)u,

Z(x.' — &)%n;

Szt < lelaliéls < Nelbllélleo < N llzllon,

> @i — D)< 8 nlla < 82N Pljnllon < 812N VHN A 2

So from (6.2) we obtain the bound
151 — S| < S(N + 2u + 2N(N + 2)S'/2||z]jau® + N¥||z]|2u?(1 + (N + 2)w).
Recalling the definition (1.3) of , we see that

- !
S S- S_ < (N + 2u + 2N(N + 2ku? + N2 1 + (N + 2)u) (6.3)
i .
~ Nu + N%2u? + 2N%u?.

When N >> 1, k >> 1, the term N%%u? may cause problcms as was scen in
table 2. Note that this term results from the term N(& Y ;€)% in (6.2). We will
now show that the computed value .§2 is a good approximation to this crror. We
have that



3w — )1, 7,)) with || < (N + 2)u 4+ O(u).

=
(6 =)+ = F)0 +%))
= (S (Te)(v + )

(221 = (T —am) (o) v+ 1)
O (N2 SN (Z%))

Note that S, contains a term #(35 €)% so, using Bjérck’s modification of the
two-pass algorithm we compute S as

Z!.—\

=5 —&)(1+48), with|f]< u
= (54 X — i () Dles— )1 49
+aa(256) D= (Dt —an)
il )(Se)+ D)
— %(Z Isf;)z(QNZ"/i + (E ’7{)2))(1 + ).

Bounding these quantities as before gives the following bound for the rclative crror:

S—5

S| < N+ 2u+ (N + 2Nk + 2N+ 2))u

+ (N +2)3N%? 4 (ON + 45 + (N + 2))u’ 4 O(u')
~ Nu + 4N*u2 4 3N*:%3

The modification has thus reduced the “sccond order term” by roughly a factor
of K.

7. Calculation of the mcan in double precision.

A greater accuracy can bc achicved from any alcorithm for computing the
sum of squares by simply using higher precision arithmetic. It is important to
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note, however, that a large increase in accuracy can often be achieved by shilting
only some of the calculations to double precision. From the crror analysis of the
two-pass algorithm, we see that computing the sample mecan in double precision
would replace the bound |&] < Nu + O(u?) in (6.1) by |&| < Nu? - O(u?).If
the remainder of the calculations are still computed in single precision, the error
bound (6.3) Wil nonetheless be replaced by the improved bound

}%{ < Nu + O(ud).

The difference which this can make in practice is evident from table 6 in section
8, which gives the results of some numerical experiments.

The generalized updating algorithm and the pairwise algorithm arc also
improved by calculating the corresponding running sums in double precision.
Numerical results for these modified algorithms are given in tables 7 and&respec-

tively.

8. Experimcental results

All of the results presented in this section were computedon an II3M370/108
computer at the Stanford Linear Accelerator Center. The data used was provided
by a random number gencrator with mean 1 and a varicty of dificrent variances
o2, For this choice of the mean, fcwl/o. In each casc theresults have bren
averaged over 20 runs. Single precision was used in most of theieits except in
the cases where the mean was computed in double precision (tables 6-8). Insinzle
precision, u a4 5 X107, The “correct” answer for usc in computine the crror
was computed in quad precision. We report the number of correct digitsinthe
calculation, defined as — log;o(£) where E' is the relative error.
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Table 1: Number of correct digits for the textbook algorithm on N data points
chosen randomly from N(I.O, o?).

NN
o 64 256 1024 2048
1.0 5.4 4.3 4.1 4.1
101 4.2 4.7 3.0 3.0
102 3.2 3.2 2.0 2.0
103 2.2 2.2 1.0 1.0
104 1.2 11 0.0 0.0
103 0.2 0.2 -1.0 -1.0
10—° —08 -0.8 -2.0 -2.0
10—7 -1.8  -1.9 -3.0 -3.0
10=8 -2.8 -2.8 -4.0 -4.0

Table 2: Number of correct digits for the two-pass algorithm on N data points
chosen randomly from N(I.O, o?).

N
o? | 64 256 1024 2048
1.0 5.2 5.1 4.0 4.0
10~} 5.4 45 4.2 4.2
102 5.6 45 4.4 3.7
103 5.6 4.6 45 3.6
10— 5.2 4.8 4.4 4.0
1073 55 5.3 3.1 3.0
10—8 45 4.4 2.1 1.9
10—7 35 3.3 1.1 0.9
108 25 2.3 0.1 —0.1
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Table 3: Number of correct digits for Bjorck’s two-pass algorithm on N data points
chosen randomly from N(I.O, o2).

N
AN

64 256 1024 2048
1.0 5.2 5.1 4.0 4.0
101 5.4 45 4.2 4.2
102 5.6 45 4.4 3.7
10—3 5.6 4.6 4.4 3.6
10— 5.2 48 3.9 3.7
1073 5.2 5.0 3.9 3.8
108 5.4 5.0 41 4.0
107 5.7 4.6 4.2 4.2
108 6.2 4.6 3.8 3.3

Table 4: Number of correct digits for the generalized updating algorithm on 1624
data points chosen randomly from N( 1.0, 02) with various valucs of m.(Note
that m == 1 corresponds to algorithm (1.5) while m = 1024 is just the two-pass

algorithm).

W

o? 1 2 4 8 16 32 64 128 250 512
1.0 40 40 43 46 49 50 50 5.1 5.0 4.2
101 42 42 45 48 50 51 52 5.3 45 4.3
10—2 45 44 47 50 51 53 54 4.9 45 4.4
103 4.1 42 45 48 50 52 52 4.8 4.G 4.6
104 36 37 40 43 45 48 50 4.8 4.8 4.6
103 32 34 38 41 43 46 48 5.1. 5.1 3.4
10—8 25 30 33 37 40 43 44 4.6 4.6 2.4
10—7 14 21 25 29 36 36 35 34 33 1.4
10—8 0.4 1.0 17 24 30 28 25 2.4 2.3 0.4
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Table 5. Number of corrcct digits for the pairwise algorithm on N data points
chosen randomly from N(1.0, ¢?).

N
ON 64 256 1024 2048

1.0 5.8 5.8 5.6 5.6
101 6.0 5.7 5.7 5.7
102 6.2 5.8 5.7 5.6
103 5.9 6.0 5.6 5.6
10— 5.5 5.8 5.9 5.8
103 4.7 5.2 5.4 5.4
10—8 45 4.7 4.8 4.9
107 3.9 4.2 4.3 4.4
108 3.2 3.7 3.8 3.9

Table 6: Number of correct digits for the two-pass algorithm on N data points
chosen randomly from N(I.O, 02). In this test the means wcre computed in double

precision.
N
o? 64 256 1024 2048

1.0 5.2 5.1 4.0 4.0
101 5.3 45 4.2 4.2
102 5.6 45 4.4 3.7
103 5.6 4.6 4.4 3.6
10— 5.2 4.8 3.9 3.7
105 5.1 5.0 3.9 3.8
10—8 5.2 5.0 4.1 4.0
10—7 5.4 45 4.2 4.2
10—8 5.6 45 4.4 3.7
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Table 7. Number of correct digits for the generalized updating agorithm on 1024
data points chosen randomly from N(I.O, 02) with various valucs of m. In this
test the running sums wcre computed in double precision. (Note that m =1

corresponds to algorithm (1.5) while m = 1024 is just the two-pass algorithm).

m
o 2

1 2 4 8 16 32 64 128 256 512
1.0 40 40 43 46 49 50 51 5.1 5.0 4.2
10—1 4.2 4.2 45 4.8 5.0 5.1 5.2 5.3 45 4.3
10—2 44 44 AT 4.9 5.2 5.3 5.4 4.9 45 4.4
10—3 44 44 47 49 52 53 53 4.8 4.G 4.6
10—4 39 39 42 45 48 50 49 4.8 4.8 4.8
103 39 39 42 45 48 50 50 4.9 4.9 4.3
10—6 41 41 43 4G 49 50 51 5.1 4.8 4.2
107 42 42 45 48 50 52 52 5.3 45 4.3
108 44 44 47 50 52 53 54 4.9 45 4.4

Table 8: Number of correct digits for the pairwise algorithm on N data points
chosen randomly from N(I.O, 02). In this test the running sums wecre computed in

double precision.

N
o 64 256 1024 2048
1.0 5.9 5.8 5.7 5.7
10—} 5.9 5.7 5.7 5.7
102 6.0 5.7 5.7 5.6
103 6.0 5.7 5.6 5.5
10— 5.9 5.8 5.7 5.6
103 5.9 5.8 5.6 5.6
100 5.9 5.8 5.7 5.6
10—7 6.0 5.8 5.7 5.7
10—8 6.1 5.8 5.8 5.6
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9. AFORTRAN implementation of the pairwise algorithm.

5

SUBROUIFINEZ UPDATE (Y,N,SUM,S,X)
INI3GER ¥,N
REAL*3 5 ,SUMN, X (N)

GIVEN THE 5U¥ BND suM OF SQUARES OF DEVI ATIONS FROM THE
KEAN FOR A SAVMPLF OF M POINTS,

o
sud = sux Y(1)
I=1

¥ 2
S = sUn (Y() - 3UM/K)
I=1
AND G VEN & NEW DATA POINIS X(1)...X(N), TH' S ROUTI NE PRODUCES
THEZ SUM AND- SUM ¢F SQUARES FOR THE COMBI NED SAMPLE:

N

SU.d = SUM+ SUM X(1)
I=1
M 2 N 2
S 1= SUM (Y (I) - SUM/(K+N)) + SUM (X(1) = SUM/(M+N))
=1 I=1

IHZ SUY AND s5UM OF SQUARES FOR THE NEW PO NTS ARE CALCULATED
USI NG THE PAIRWISE ALGORTIHM, THE OLD SUM AND SUM OF SQUARES

1S THiy UPDATED.

TH'S R0UTINE HRS LOCALLY DIMENSICNED AFRAYS TERMS, SUMA AND
S5A WHIZH CURRENTLY HAVE DIMENSION 21. THIS LIMTS THE

NUMBER OF POINTS WH CH CAN BE HANDLED T0 N <= 2#%20 = 1048576.
TO Usz WTH LAFCEF N, | NCREASE THESE DI MENSI ONS TO SOVETH NG
AT LEAS ;' AS LARGE AS LOG2(N) + 1.

"INIEGER TERMS (21),TOP,T

REAL*8 SUMA (21) ,SA (21) ,MEAN,NSUM NS

TE&RMS (1) = 0
TOP = 2
N2 = N/2
IF (N .LE. 0) GC TC 70
IF (N .GT. 1) GO TO 6
NSUX = X (1)
NS =0
GO 70 50
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6 bo 20 I=1,N2

# COMPUTE THE SUM AND SUM OF SQUARES FOR THE NEXT T#0
¢ DATA POINTS IN X PUT THESE QUANTI TIES ON TOP OF

¢ THE STACK
SUMA (TQP) =
SA (ropP)y = (

X(2%I-1) + X (2*I)
X(2%I) - X(2*%I-N)**x2 / 2.0

TERNS (TCP) = 2
13 | F (TERMS (TOP) .NE. TERKS (TOP-1)) GO TO 20
# TOP TWO ELEMENTS ON STACK CONTAI N QUANTI TI ES COVPUTED
# FEOM THE SAME NUMBER OF DATA PO NTS. COMBI NE THEM
P = TOP-1

TERMS (TG
SA (TCP)

SUMA (TOP
50 T2 10
23 TOP = TCP+1

TOP = TOP-1

P) = 2 * TERMS (T?P)

= SA(TOP) + SA(TOP+1) + (SUMA (TOP) - SUMA (TOP+1) ) *x2
/ TERMS (TOF)

) = SUMA (TOP) + SUMA (TOP+1)

IF (2%*N2 .EQ. N) GC TO 30

# N 1S ouvbD.
TOP = TCP+1

PUT LAST PCINT ON STACK

TERMS (TOP) = 1

SUMA (TGP) =

Sa(T0oP)y = O

30 T = TEKkMS (TOP)

NSUM = SUMA (TO
NS = SA(TOPF)

IF (TOP .LT. 3

X (M)
.0
P)

) GC TO 50
A POMNER OF 2, THE STACK CONTAI NS #ORE THAN

#¢ ONE ELEMENT. COMBI NE THEM:

# N Is NOT
DG 40 J=3,T
I = TOoP+
S = NS

X (T
NSUM = N
43 I = T+TE

50 CCNTINUE

OoP
2 - J
+ SA(I) + T*(TERMS (I)*NSUM/T -~ SUMA(I))**2 /

ERES(I) * (TERMS(I) +T))
SUM + SUMA(I)
RES(I)

# COMBINENSAND NSUM WTH SAND SUM RESPECTIVELY:

IF (M .EQ. 0)

GO TO 60

NS = S + NS + M* (N*SUM/K ~ NSUM)**2 / (N* (N¢M))

NSUM = SUM
60 S = Ns
SUM = NSUH

70 RETURN
END

+ NSUM
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