
UPDATING FORMULAE AND A PAIRWISE ALGORITHM FOR
COMPUTING SAMPLE VARIANCES

Tony F. Chan
Gene H. Golub

Randall J. LeVeque

STAN-CS-79-773
November 19 7 9

DEPARTMENT OF COMPUTER SCIENCE
School of Humanities and Sciencesa

STANFORD UNIVERSITY

Updating Formulae and a Pnirwise Algorithm for
Computing Sample Variances

Tony F. Ghan*
Gene H. Golub’*

Randall J. LeVeque**

Abstract. A general formula is presented for computing the sample v;iiiancc
for a sample of size m+ n given the means and variances for two subsnn+lcs of
sizes m and n. This formula is used in the construction of a pa.irwisc nl~:orithm
for computing the variance. Other applications are discussed as v~ll, including
the use of updating formulae in a parallel computin g cnviornmcn t. Wc present
numerical results and rounding error analyses for several numerical schcr~~s.

*Department of Computer Science, Yale University, New I-Tavcn, CT OGZ 3 1
**Department of Computer Science, Stanford University, Stanford, CA 943cir5.

This work was supported in part by Army contract No. DAAGEI-‘E-G-013 cznd
by a National Science Foundation graduate fellowship. The pnlxr was produced
using ?I)$, a computer typesetting system created by Donald Knuth at 5La:;ford.

1. Introduction.

In computing the variance of a sample of N data points {xi), the fundamental
calculation consists of computing the sum of squares of deviations from the mean.
This quantity, which for brevity will be referred to as “the sum of squares” or. .
simply as “S”, is defined as

where

1 Nz=--
N . .xiec &lb)

This computation can be easily performed directly by the two-pass algorithm
(1.1) provided *hat (a) N is small compared to the amount of core memory nvail-
able and (b) the variance is not too small relative to the norm of the data,

II42 = (Xi-1N- Xi> l
2 V2 If either of these conditions is violated, however, the situa-

tion changes. If N is large, this approach to computing S may bc unsatisfactory
since it requires passing through the data twice: once to compute Z and then again
to compute S. This problem is somctimcs avoided by use of the following textbook
algorithm, so called because, unfortunately, it is often suggcstcd in statistical
textbooks:

This rearrangement allows S to be computed with only one pass through the data,
but the computation may be numerically unstable and should almost ncvcr bc
used in practice. This instability is particularly troublcsomc when S is very small
compared to jlxjl 2, in which case even the two-pass algorithm can lx unstable.

In discussing the stability of a numerical scheme for computing S, a useful
concept is that of the condition number K of the data. This quantity was first
i n t r o d u c e d b y Ghan and Lcwis[2] h gw o ivc a thorough discussion. Briefly, PC is a
measure of the sensitivity of S to changes in the data. The quantity KU is an upper
bound for the relative perturbation which would occur in the exactly computed
sum of squares if the input data contained rclativc errors of size U. Jf the true sum
of squares is S, then rc~ is given by

II IIx 2tc==-.
a (1 3).

1

It is easy to see that K > 1 and that in general K grows as the variance dccrcascs.
An error analysis of the textbook algorithm[2] 1s lows that the rclntivc error

in S can be bounded by something on the order of

where u is the machine roundoff unit (see section 6). This slgorithm is thcrcfore
seldom useful, as confirmed by the experimental results of Table 1.

The error analysis of the two-pass algorithm found in section 6 shows that
the relative error in the sum of squares computed using that algorithm can be
bounded by

Nu + N2tc2u2.

The second term in this bound has traditionally been ignored in error analyses of
the two-pass algorithm as being of second order. But in the cast we are intcrcstcd
in here, when N and K are both large, this term can easily dominate. Table 2
shows this happening in practice.

During the preparation of this manuscript, a simple modification of the two-
pass algorithm was found by Professor Ake EjGrck which reduces this bound.
Based on the error analysis of section 6 for the standard two-pass algorithm, he

suggested computingS by

S=P(md xi
i=l

-5)2- j$($(Ximf))2* (1 4).

In exact arithmetic the second term is zero, but computationally it is a good
approximation to the error in the two-pass algorithm. Note that (1.4) can also

-be viewed as the textbook algorithm applied to the data {(xi - 2)). The error
analysis of section 6 shows that the relative error in S computed by (1.4) can be
bounded by

Nu + 4N2~u2.

This modification adds only N additions and 2 multiplications to the cost of the
two-pass algorithm (already 3N - 2 additions and N + 1 multiplicat~ions) and can
be very useful when the data is poorly conditioned. See table 3 for some numcricnl
results.

Of course formula (1.4) is still a two-pass algorithm. For large N it may
be desirable to compute S with only one pass through the data. A number of
papers have appcarcd recently on “updating” algorithms for CoInpUtiilg S. Thcsc
are algorithms which are based on formulae for adding one new dnt#n point to a

2

sample and computing the value of S for the combined sample by updating the
(presumably known) value of S for the original sample. By starting with a sample
of size 1 and applying this formula repeatedly, we get a one-pass al~orithrn for
computing S for a sample of arbitrary size. Youngs and CramerjG] have invcs-
tigated several such algorithms and have found the following algorithm to bc the. .
best:

s 0. -. -
T := x1
for j := 2,3,...,N do

T :=T+x~ (1 5).

This is based on the updating formula

-_ Sl,j = s,,j-1 +
1

j(j - 11
(3*Xj - Tl,j12 (1 G).

where Si,j stands for the sum of squares for the data points xi tllrou~h xj ;rnd Ti,j
is the sum of xi through xj. This notation will be used throughout.

One imporant characteristic of this updating formula is that S’l,j is forirlcd
from Sl,j- 1 by adding to it a nonnegative quantitiy. In tk textbook nlyrithm
(1.2), on the other hand, S is formed by a subtraction which can lend to gross
cancellation and even to negative values of S being cornputcd.

In practice the method (1.5) generally performs on a lcvcl comparable to the
two-pass algorithm (1.1). Ch an and Lewis[2] present dctailcd error annlyx,; of
some similar updating methods.

In the next section we present a generalization of the updatin:: formu!;: (1.6)
for combining two samples of arbitrary size. Then in sec t ion 3 WC dcscriix a
pairwise algorithm for computing S which is essentially still a one-pass ;ll::orithni
but which numerically is often more stable than the standard two-pxs algorithm.

2. A General Updating Formula.

The method of Youngs and Cramer depends on an updating forrnuk which
allows one to compute S for j+ 1 points when given the value of S for j poinis and
one new point. In other words, we can combine a sample of size j with a sample
of size 1 and determine the value of S for the combined sa.mplc.

This formula can be easily generalized to allow us to combine two sxnplcs of
arbitrary size. Suppose we have two samples {xi};“-1, {xi}~~~+l and GC lx~ow

3

m+nm

Tl,m = c xi, Tm + l , m + n = c Xi,

i - l i = m + l

m

s,,m = C(
Xi -

i=l

AT,.,)zr

m+n

Sm+i,mfn = C (xi - ‘Tm+-l,m+-n)2*
i = m + l

7-L

Then, if we combine all of the data into a sample of size m+ n, it can be shown
t h a t

Tl,m+n = Tl,m + Tl,m+n

&,m+n = S,m + Sm+l,m+n
2

+ ’m- Tm+l m + n
>

lt

<2.14

(2.lb)

If we rewrite the latter formula as

s1,tn+n = Stm+Sm+l,m+n+ m (m+n
2

-qm -
dm+n) ?-la

Tl,n-/--m 7
>

then we see that for m = 1, n = j - 1, this reduces to the formula of Youngs
and Cramer, since S = 0 for any single data point. The form (2.lb) is rnorc st~~~blc
numerically, however.

Regardless of what method is used to compute S, the formulx (2.1) r~~.y be
useful in their own right whenever two sa.mpks must be corr~bincd. Onr pcJ%ibk

application is to parallel processing. If one has two or more proccxor:; nvAl;llAc, tlx
sample can be split up into smaller subsamples, and Chc sum of :;(1\1zics CC)iil/)\ltcd

-for each subsample independently using any algorithm dcsircd. The sum of quarts
for the original sample can then bc ca.lculatcd using the up&Ain~ lorrr:ulx

However, even in the case of a single yroccssor, it is very ~!~sir;r.Mc to corqsutc
S using (2.1). The method (1.5) ma.y be gcneralizcd to cornputc S by procr:;sing
the-data in groups of m elements: cornputc the sum of squnxcs for cxl~ group usiits
the two-pass algorithm and then update the global S accordingly. Tr:i.ditiona’l
updating algorithms such as that of Youngs and Cramer have used TN--- 1.

We have found, however, that the stlability of the algorithm is incrcnsrd by
taking m > 1. One can easily see that the total number of arithmetic opcxtions
performed on the data is minimized by taking m = m. WC n&$t cxpc-c,t t h a t

this choice of m will minimize the resulting error. Although WC do not have a
satisfactory error analysis of this algorithm, the experimental results of i;iblc 4 do

4

tend to confirm this prediction. Strictly speaking, with m > 1 this i:i no lo;lgcr ;:
one-pass algorithm, but we see that only m data values at a time need to bc kept
in core, and m can be as small as necessary.

3. The P&wise Algorithm.

Table 4 shows that choosing m > 1 not only gives more accuracy than using
m = 1, but can actually give significantly more accuracy than the two-pass algo-
rithm. This suggests that when computing the sum of squares for the subsnmples
of size m, we should not use the two-pass algorithm when S is small. Iini.i~cr, WC
should split the subsample into yet smaller groups. Taking this idcn to the limit
yields a pairwise algorithm analogous to the well-known pnirc-isc al::orit!m~ for
computing the sum of N numbers. Let Si,j stand for the sum of squares of cluncnts
xi through xj, and let rr~ =: [N/2], the largest integer not cxcccdin~ N/2. Then
the method consists of computing S~,N by first computing SI,,,~ nild Stll+],,~ and
then combining these by means of (2.1). Each of thcsc lnttcr quantities 11;;s been
computed by a-similar combination of still smaller subsamplcs.

The algorithm can be implemented as just described, but for rcnsons ~,~!:ich
we will explain shortly it is actually best to pcrforrn the pnirksc al,n,oritArn in
a somewhat modified manner. Consider the following exam+ with IV = 13.
Schematically, we compute from left to right in the tableau (3.1). The hhndintc
Ti,j are also computed in a similar tableau for USC in updating the S’j,j. 1‘1~ final
value T~,N will be the sum of all the data points as computed by the p~irwisc
summation algorithm. In practice we can compute from top to bottom in thcsc
tableaux requiring only one pass through the data and using only O(lo,cr,, IV) dorag
locations for intermediate results. We require one such location for cnch column
in each tableau. The computation for the tableau (3.1) would prow4 as follows:

(a) Compute 5’~ and store in S[l].
(b) Compute SJ,~, combine with S[l] to get SI,~, and store this in S[Z].
(c) Compute S”,o and store in S[l].
(6) Compute S&8, combine with S[l] to get S5,8 and then combine this

with S[2] to get Sl,& which is then stored in S[3].
(e) Compute Sg,lo and store in S[l].
(f) Compute S’1,12, combine with S[l] to get Sg,12, which is then stored

in S[2].
(g) Clean-up (necessary when N is not a power of 2):

Combine xl3 with S[2] to get &~3. Combine this with S[3] to get $1~.

5

x1 \x2/1)2\
/

5i,4 .
x3’s3 4x4’ ’ \

%,8

3s’s5t3a/ J \/
/

S-48

9\si8

a’
I

%

z9\S9 10
/ ’

Xl0
x \

sQJ2

I;>>
-;.-

) s&l3

x13

(3 1).

13

Alternatively, we can u6e a stack structure for the temporary locations as is tione
in the sample FORTRAN routine given in section 9.

The final step (6) f0 our algorithm rcquircs the combination of S~~III~IlC~5 of c&c
disparate sizes. Such a calculation would Ix avoided if WC atloptcri tl~c al~oriLllrll
as described in the first paragraph of this section, For the pnirwisc suwwtion
algor i thm, Tsao[4] points out that the corresponding method gives a &~~cxxd
“average error complcxi ty” a n d prcscnts an implcmcntation b;wzd on the binary
expansion of N. That strategy could L>c adopted in the prcscnt contest x ~11,
but its usefulness here is qucstionablc. WC feel that the small incrcxc in accuracy

which might result would be more than offset by the increased work which we
would thus incur. For the updating formula (2.lb), it is desirable to have r~ = m
whenever possible, since that formula then becomes simply

&,2m
1

= Sl,m + s,+1,2,+ ~CF,na - T,+1,2?7J2*

In this respect, the tableau (3.1) gives the preferable computational schcmc. In
fact, the amount of work required to perform the pairwisc algorithm as dcxribcd
here is not significantly more than that required for the two-pa.ss al::orithm. An
operation count shows that roughly 2N additions and 5N/2 rnul~.i!)licntio~~s arc
required, as opposed to 3N additions and N multiplications for the t\:‘o-I>ilSS al-
gorithm. In addition, some bookkeeping operations are rcquircd to nl::na~:c the
pairwise algorithm.

Although we are not able to provide any error bounds proving the superiority
of the pairwise algorithm, our experimental results have been quite sati:Jn.ctory.
Some of these results are shown in table 5 of section 8.

5. Extensions.

Often one wants to compute a weighted sum of squares of dcviatioil~, from
the mean,

(5 1)
c .

The updating formulae (2.1) still hold with only a few minor modifications. IJet

W*hk = xi=j wi. Then (2.1) is replaced by

M/1, tn

(W)rn + Wn+l,ttl-I- ta) (5 2).

w
X

m+l,m+n
K,tYl

&,a - Ttn+-l,m+n l

Another quantity which is often of intcrcst is the covariancc of two sxqAcs
{x;} and {yi}. For this it is necessary to compute

i=l

If WC let Ti$ = cbj xi, T 2 = c&iyi, then the updating formula for C is$y

(5 3).

6. *Error analysis of the two-pass olgorithms.

We assume throughout our error analyses that WC are dealing with a machine
with a guard digit and relative precision u, On a base /3 machine with a. 1 digit
mantissa and proper unbiased rounding, u = &31Mt.

Roman letters with tildas over them will be used to dcnotc quantitics ac-
tually computed numerically. The same letter without a tilda will izdicatc the
corresponding exact--quantity.

In this section we present error analyses for both the standard two-pass algo-
rithm (1.1) and BjGrck’s modification (1.4). Let

Sl = e(Xi - 2)2,

i=l

s=s, -sp

The standard two-pass algorithm is Sl. We first compute a value i for the
mean of {x;}. If this is computed in the standard manner WC have

;= jfj $ Xi(l + Ei), with Icil < N U + O(U’),
. . (6 1).

The computed value $ is then given by

8

31 = C(xi - ;)‘(I + vi), Ivij < (N + 2)~ + O(u2j

C U(Xi - 2) + (2 -I>
>

'(1 + Vi)

=C((5i-Z)2+2(Zi-ji(i-~)+(Z-~)2)(1+~i)

= S + C(Xi - Z)‘qi - i(C Xici) C(Xi - Z)(l + 7);) (602)

+ ($Cxitir(N+ C?ji)*

The O(U’) terms in the bounds for 17/il and I[iI turn out to be unimportant in the
present error analysis and will be dropped below. Note that C(xi - ‘z) = 0 and
that the following inequalities hold:

Ix(xi - 5)‘qi < Sll~lloo C S(N + 2)~)-.

Ic I
xiEi < Ilxl1211El12 < N”211~l1211~llm < N3’2115112u,-

(xi - f)qi < S”2~~~~~2 < S1~2N1~2~~~~~~ < S”‘N ‘lz(h’ + 2)~.I
So from (6.2) we obtain the bound

II& - Sll < S(N + 2)u + 2N(N + 2)S”211xl 12u2 + N211s ,l&-J2(1 + w -t 2b4

- Recalling the definition (1.3) of K, we see that

I - t

(6 3).
Sl - s

-I iS
< (N + 2)u + 2N(N + 2)lcu2 + N2n2u2(1 + (N + 2)~)

- N u + N2tc2u2 + 2N2rcu2.

When N >> 1, K >> 1, the term N2~2u2 may cause problems as was srcn in
table 2. Note that this term results from the term N(h C xi[i)2 in ((3.2). VA wilI

now show that the computed value $ is a good approximation to this error. We
have that

9

i

II
62

1E-
N (xi-i)(l + yi))’ with lril < (N + 2)~ + O(u2).

1E-
N ((Xi - 5) + (5 -

1F-
N CC (xi -~)~i)2 - j$(x(Xi - STi) (C xi(i) (N -f- C ri)

+ &(Cx~CJ2(N2 + 2NC7i + (XTi)‘)

Note that 3; contains a term &(Cxi[i)2, so, using Ejijrck’s modification of the
two-pass algorithm we compute 3 as

3 = (31-l $I)(1 + S), with 161 < u

Bounding these quantities as before gives the following bound for the rclativc error:

y < (N + 2)~ + (N + 2)(4Nx + 2(/V+ 2))~’

+ (N + 2)(3N2fi2 + (GN + 4)~ -1 (N + 2))~~ + o(u4)
z

- Nu + 4N2tw2 + 31V~t~~u~.

The modification has thus reduced the ‘kccond order term” by roughly a factor
of K.

7. Cnlculotion of the mczln in double precision.

A greater accuracy can bc achicvcd from any algorithm for computirl~ the
sum of squares by simply using higlw precision arithmetic. It is important to

10

note, however, that a large increase in accuracy can often be achieved by shiftilq
only some of the calculations to double precision. From the ciror annlysir; of the
two-pass algorithm, we see that computing the sample mean in double precision
would replace the bound IEil < N U + O(U’) in (6.1) by Itil < Nu2 -/- O(u”). If
the remainder of the calculations are still computed in single precision, the error
bound (6.3) ‘11wi nonetheless be replaced by the improved bound

$1 -s
S

< N u + O(u3).

The difference which this can make in practice is evident from table 6 in section
8, which gives the results of some numerical cxperimcnts.

The generalized updating algorithm and the pairwise algorithm il r<’ also
improved by calculating the corresponding running sums in double precision.
Numerical results for these modified algorithms are given in tables 7 a.r;d 8 respec-
tively. ._

8. Experimental results

All of the results presented in this section were cornputcd ou an II),;\,I 370/I F%
computer at the Stanford Linear Accelerator Center. The data u:icd \j’ils ;m~~idi:d
by a random number generator with mean 1 and a variety of clGcrmt vilrirtnccs
u2. For th is choice of the mean, K M l/a. In each case the rc:;rAts have IPX~I
averaged over 20 runs. Single precision was used in most of the LY AS CSC+L in
the cases where the mean was computed in double precision (tnlk~; GS). III ~i;~~lc
precision, u w 5 X 10m7. The “correct” answer for U S C in computing the :‘xo:
was computed in quad precision. We report the number of correct digiLs irl t’ilc
calculation, defined as - loglo where E is the relative error.

11

Table 1: Number of correct digits for the textbook algorithm on N data points
chosen randomly from N(l.O, u2).

1.0
lo-’
1o-2
1o-3
1o-4
1o-5
10-O
1o-7
lo*

64 256 1024 2048

5.4 4.3 4.1 4.1
4.2 4.7 3.0 3.0
3.2 3.2 2.0 2.0
2.2 2.2 1.0 1.0
1.2 1.1 0.0 0.0
0.2 0.2 - 1 . 0 - 1 . 0

-0.8 - 0 . 8 - 2 . 0 - 2 . 0
- 1 . 8 - 1 . 9 - 3 . 0 - 3 . 0
- 2 . 8 - 2 . 8 - 4 . 0 - 4 . 0

Tnblc 2: Number of correct digits for the twopass algorithm on N data points
chosen randomly from N(l.O, u2).

64 256 1024 2048

5.2 5.1 4.0
5.4 4.5 4.2
5.6 4.5 4.4
5.6 4.6 4.5
5.2 4.8 4.4
5.5 5.3 3.1
4.5 4.4 2.1
3.5 3.3 1.1
2.5 2.3 0.1 -

4.0
4.2
3.7
3.6
4.0
3.0
1.9
0.9
0.1

12

Teible 3: Number of correct digits for Bjijrck’s two-pass algorithm on N data points
chosen randomly from N(l.O, u2).

N
1o2
1.0
10-l
1o-2
1o-3
lo-”
1o-5
10-e
1O-7
1o-8

64 256 1024 2048

5.2 5.1 4.0 4.0
5.4 4.5 4.2 4.2
5.6 4.5 4.4 3.7
5.6 4.6 4.4 3.6
5.2 4.8 3.9 3.7
5.2 5.0 3.9 3.8
5.4 5.0 4.1 4.0
5.7 4.6 4.2 4.2
6.2 4.6 3.8 3.3

Table 4: Number of correct digits for the generalized updating al=r,orithrn on 1024
data points chosen randomly from N(1.0, u2) with var ious values of m. (,Sotc
t h a t VA = 1 corresponds to algorithm (1.5) while m = 1024 is just the two-pass
algorithm).

m

AlI
o2

1.0
lo-’
1o-2
1O-3
1O-4
1O-5
1r6
1o-7
lo-

1 2

4.0 4.0 4.3 4.6 4.9 5.0 5.0
4.2 4.2 4.5 4.8 5.0 5.1 5.2
4.5 4.4 4.7 5.0 5.1 5.3 5.4
4.1 4.2 4.5 4.8 5.0 5.2 5.2
3.6 3.7 4.0 4.3 4.5 4.8 5.0
3.2 3.4 3.8 4.1 4.3 4.6 4.8
2.5 3.0 3.3 3.7 4.0 4.3 4.4
1.4 2.1 2.5 2.9 3.6 3.6 3.5
0.4 1.0 1.7 2.4 3.0 2.8 2.5

4 8 16 32 64 128 256 512

5.1 5.0
5.3 4.5
4.9 4.5
4.8 4.G
4.8 4.8
5.1. 5.1
4.6 4.6
3.4 3.3
2.4 2.3

4.2
4.3
4.4
4.6
4.G
3.4
2.4
1 A
0.4

13

Tuble 5: Number of correct digits for the pairwise algorithm on N data points
chosen randomly from N(l.O, u2).

N
a2\

1.0
lo-’
1o-2
1o-3
1o-4
1o-5
lO-6
1o-7
lo4

-_

64 256 1024 2048

5.8 5.8 5.6 5.6
6.0 5.7 5.7 5.7
6.2 5.8 5.7 5.6
5.9 6.0 5.6 5.6
5.5 5.8 5.9 5.8
4.7 5.2 5.4 5.4
4.5 4.7 4.8 4.9
3.9 4.2 4.3 4.4
3.2 3.7 3.8 3.9

TnbIe (5: Number of correct digits for the two-pass algorithm on N data points
chosen randomly from N(l.O, u2). In this test the means were computed in double
precision.

o2 N\
1.0
10-l
1O-2
1o-3
1o-4
1o-5
1o-s
1o-7
1o-8

64 25G 1024 2048

5.2 5.1 4.0 4.0
5.3 4.5 4.2 4.2
5.6 4.5 4.4 3.7
5.6 4.6 4.4 3.6
5.2 4.8 3.9 3.7
5.1 5.0 3.9 3.8
5.2 5.0 4.1 4.0
5.4 4.5 4.2 4.2
5.6 4.5 4.4 3.7

14

Tnble 7: Number of correct digits for the generalized updating algorithm oil 1024
data points chosen randomly from N(l.O, u2) with various values of nz. In this
test the running sums were computed in double precision. (Note that 172 = 1
corresponds to algorithm (1.5) while m = 1024 is just the two-pass algorithm).

m.
\CT2

1.0
lo-’
1o-2
1O-3
1o-4
1o-5
10-O
lo-7
lo4

1 2 4 8 16 32 64 12s 256 512

4.0 4.0 4.3 4.6 4.9 5.0 5.1 5.1
4.2 4.2 4.5 4.8 5.0 5.1 5.2 5.3
4.4 4.4 4.7 4.9 5.2 5.3 5.4 4.9
4.4 4.4 4.7 4.9 5.2 5.3 5.3 4.8
3.9 3.9 4.2 4.5 4.8 5.0 4.9 4.E
3.9 3.9 4.2 4.5 4.8 5.0 5.0 4.9
4.1 4.1 4.3 4.G 4.9 5.0 5.1 5.1
4.2 4.2 4.5 4.8 5.0 5.2 5.2 5.3
4.4 4.4 4.7 5.0 5.2 5.3 5.4 4.9

5.0
4.5
4.5
4.G
4.8
4.9
4.8
4.5
4.5

4.2
4.3
4.4
4.6
4.8
4.3
4.2
4.3
4.4

Table 8: Number of correct digits for the pairwise algorithm on N data points
chosen randomly from N(l.O, u2). In this test the running sums wcrc cornputcd in
double precision.

--___I

1.0 ’ 5.9
lo-’ 5.9
1o-2 6.0
1o-3 6.0
1o-4 5.9
1o-5 5.9
1o-0 5.9
1o-7 6.0
lo-” 6.1

256 1024 2048

5.8 5.7 5.7
5.7 5.7 5.7
5.7 5.7 5.6
5.7 5.6 5.5
5.8 5.7 5.6
5.8 5.6 5.6
5.8 5.7 5.6
5.8 5.7 5.7
5.8 5.8 5.6

15

9. A FORTRAN implementation of the pairwife algorithm.

SUi3ROUl'fNS UPDATE(M,NJSUN,S,X)
IN13GER M,N
BEAL S ,SUh,X(N)

(;IVEN ZHE SU?! BND SU?¶ OF SQUARES OF DEVIATIONS FROM THE
KEAN Fr)R A SAMPLF OF 5 PXNTS,

M
su?l = S&l Y(1)

I= 1

S = Sk (Y(I) - 3UM/,",)
2

I=1

AND GIVEN E; NEW DATA ?OItiil"S X(1),.,X(N), THIS ROUTINE PRODUCES
TH9 SUM AND-SUM GF SQUARES FOR THE COMBINED SAIIE'LE:

N
su.1 := SUM + SUM X(I)

I=1

THIS 33UTJ.NE HRS LOCALLY DI3ENSI~NBD AFRAYS TEFMS, SUMA AND
SA idHI,'H CURRENTLY HAVE DIr!ENSION 21. THIS LIMITS THE
NUY3EEi C)F POINTS WHICH CAN BE HANDLED TI) N <= 2**20 = 1048576.
Tir US3 WITH LAFGEF N, INCREASE THESE DIMENSIONS TO SOMETHING
AT LEAS';' AS LARGE AS Li)G2(N) + 1.

elNX~GER TtIRMS(21),T3P,T
REAL*8 SWA(21) ,SA (21),PlEAN,NS!JM,NS

TEfiifS(1) = 0
ZJP = 2
K2 = N/2
IF (N .LE. 0) GC TC 70

5 IF (l-i .GT. 1) GO TC! 6
NSU?? = X(l)
NS = 0

rt 2 ?? 2
s := SUY (Y [I) - SUn/(kPN)) + su?l (X(I) - SUY/(M+N))

I= 1 I=1

IHS SUY AND SUJ CF SQUA3ES FOR TfIE NEW POINTS ARE CALCULATED
USING THE PAPRdISE ALGORTIHM, THE OLD SUM AND SUM OF SQUARES
IS THI;X UPDATED.

16

6 DO 20 1=l,N2
C # CdMPUTii: THE SUM AND SUM OF SQUARES FOR THE NEXT TSJO
c t DATA POINTS IN X. PUT THESE QUANTITIES ON TOP OF
C I THE STACK.

SUMA = x(2*1-l) + X(2"f)
SA(fr)P) = (x(2*1) - X(281-I))**2 / 2.0
TERMS(TCP) = 2

13 IF (T!%!?S(TOP) .NE. TERKS(TDP-1)) GO TO 20
c Y TOP TWO ELEMENTS ON STACK CONTAIN QUANTITIES COMPUTED
c # PELJM THE SAM 9 NUMBER OF DATA POINTS. COMBINE THEM:

x>P = TOP-1
llERriS(TOP) = 2 * TERtr;S(T?P)
SA (TCP) = SA(T3P) + SA(T2P+l) + (SUMA(TpP) - SUMA(T3P+l))**2

X / TERMS(TOF)
SUlYA (TOP) = SUMA (TOP) + SUMA(TOP+l)
GO T3 10

23 TOP = TCP+l
C

TOP = TOP-1
IF (2*N2 .EQ, N) GC TO 3 0

C # N IS i)liD. PUT LAST POINT ON STACK:
TOP = TCP+l
TERMS(TOP) = 1
SUMA(TGP) = X(Y)
SA(TOP) = @.O

30 T = TEhMS(TOP)
NSUM = SU!'lA(TOP)
NS = SA(TOP)
IF (TOP .LT. 3) GC TO 50

n N IS NOT A PCWER QF' 2, THE STACK CONTAINS M3RE THAN
Y 3NE ELEMENT. COMBINE THEM:
DG 40 3=3,TOP

I = TOP+2 - J
8s = NS + SA(I) + T*(TERMS(I)*NSUM/T - SUMA(I) ,'

X (TERkS(I) * (TERMS(I)+T))
NS iJly = NSUM + SUMA

43 I: = T+TERP",S(I)
c

c
C

C
- 50 CCHTINUE
c X I2MBINE NS ANI! NSUM WITH S AND SUM RESPECTIVELY:

LIF (M .SQ. 0) GO TO 60
NS = s + NS + M*(N*SUM/M - NSUM)**2 / (N*(K+E))
NSUY = SUM + NSUM

60 S = NS
SUM = NSUM

c
70 RETURN

END

17

Acknowledgements.

We are particularly indebted to A. Bjiirck for his suggestions concerning the
two-pass algorithm.

References.

[l] Chan, T.F.C., and Lewis, J.G. Computing standard deviations: accuracy.
CACM 22,9(Sept. 1979), 526-531.

[2] Ghan, T.F.C., and Lewis, J.G. Rounding error analysis of algorithms for com-
puting means and standard deviations. Tech. Rep. No. 284, Dept. of
Mathematical Sciences, The JohnsHopkinsUniversity, Baltimore, Md., April
1978.

[3] Hanson, R.J. Stably updating mean and standard deviations of data. CACM
18,8(Aug. 1975), 458.

[4] Tsao, N. On “aqcurate” evaluation of extended sums, manuscript, Dept. of
Computer Science, Wayne State University.

[S] West, D.H.D. Updating mean and variance estimates: an improved method.
CACM 22,9(Sept. 1979), 532-535.

. [S] Youngs, E.A., and Cramer, E.M. Some results relevant to choice of sum and
sum-of-product algorithms. Technometrics 13(Aug. 1975), 458.

18

