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Abstract

When trading, investors make decisions based on not only the secu-
rity and market variances but also the technical price range.'However,
academic literature investigating its properties is scarce. Better under-
standings of this risk measurement candidate are supposed to provide
guidance for investors. In this paper, the statistical properties and dy-
namic structures of technical price range are investigated broadly with
different index data, and some interesting facts are discovered:

1) the technical range volatility follows the normal distribution approxi-
mately;

2) the dynamic structure of the technical range volatility can be well de-
scribed by a moving average model.

To test whether the TRV-MA model could well capture the dynamic struc-
ture of the technical price range volatility, empirical studies are performed
on CAC40, DAX, FTSE, HS, NIKKEI225, S&P500, and STI. To evaluate
the predicting ability of the TRV-MA model, a new criteria is proposed.
Based on this new criteria, the TRV-MA model does provide sharp pre-
diction. Interesting problems based on the technical range volatility are
suggested in the conclusion, better understandings of these problems are
supposed to provide better understandings of the market microstructures.

According to our knowledge, this paper is the first one to investigate
the statistical properties and the dynamics of technical range volatility.
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1 Introduction

Volatility plays a very important role in finance, not only in asset pricing, port-
folio choice but also in risk management. Estimating and modeling the volatility

*Supported by the National Science Foundation of China.

TInstitute of Systems Science, Academy of Mathematics and Systems Science, Chinese
Academy of Sciences, Beijing 100190, China

IThe price range employed in this paper is in technical sense, different from the one adopted
by Parkinson (1980).



of speculative asset prices have always been a central theme in the literature of
financial economics and econometrics. As a measure of risk, volatility modeling
is important to researchers who are trying to understand the nature of the dy-
namics of volatilities. It is also of fundamental importance to policy makers and
regulators as it is closely related to the functioning and the stability of financial
markets, which has direct links to the functioning and fluctuations of the real
economy.

Engle (1982) developed the ARCH model and used it to estimate the means
and variances of the inflation in the U. K. Bollerslev (1986) generalized the
ARCH model and developed the GARCH model, which is widely used in finan-
cial engineering. As the ARCH and GARCH failed to capture the asymmetric
volatility, Nelson (1989) proposed the E-GARCH model. Of course, there are
many other ARCH-like models, such as the NGARCH model by Engle and Ng
(1993), the TGARCH model by Zakoian (1994). For a critical review with a
through survey of the ARCH literature, see Bollerslev, Chou, and Kroner (1992).

Despite the success of ARCH-family models in capturing and predicting the
volatility, there are some drawbacks. Alizadeh, Brandt, and Diebold (2002),
Brandt and Diebold (2006), and Chou (2005) pointed out the inaccuracy and
inefficiency of ARCH-family models, because they are totally based on the clos-
ing prices of the reference period, completely ignoring the information contents
inside the reference. For example, in turbulent trading days with drops and
recoveries of the markets, the traditional volatility based on closing prices indi-
cates low efficiency.

An alternative volatility proxy is price range, which in most academic liter-
ature is defined as the difference between the log highest and log lowest prices.
Price range is widely investigated ever since it was first proposed by Parkinson
(1980), as it is supposed to correctly show the high volatility. In this paper, the
price range adopted by Parkinson is denoted as R, ;:

Rp7t = ln(Ht) — ln(Lt) (1)

Academic literature on the range-based volatility estimator dates back to the
early 1980s.? Based on the assumption that the asset price follows a Geometric
Brownian Motion (henceforth GBM) without drift, Parkinson (1980) proposed
the following volatility estimator:

52 = [In(Hy) — In(L,)]?/4In2 (2)

Instead of using only two point data, Garman and Klass (1980) incorporated
the highest, lowest, opening and closing prices into their estimator. With the
same assumption, Garman and Klass suggested the following estimator:

02 = 0.5 [In(Hy) — In(Ly)])? — (2In2 — 1) * [In(Cy) — In(Oy))? (3)

In reality, it is not practical to assume no drift in financial data. In this case,
neither the Parkinson nor the Garman-Klass estimators is an efficient estimator.

2In this paper, we denote the highest, lowest, opening and closing prices as Hy, L¢, C¢ and
Oy respectively.



Rogers and Satchell (1991) and Rogers, Satchell, and Yoon (1994) proposed an
alternative estimator which is drift-independent, incorporating the drift term
information into the highest, lowest, opening and closing prices. Their estimator
is much more complex, and can be written:

62 = [In(Hy)—In(O)]*[In(Hy) —In(Cy)]+[In(Le) —In(O4) % [In(Ls) —In(Cy)] (4)

When applied to the real data, all these three estimators are downward biased.
A correction therapy was proposed by Yang and Zhang (2000).

Though elegant in form and efficient in theory, those volatility estimators
suffer from their underpinnings: Geometric Brownian Motion (GBM) with or
without drift.Whether or not the asset prices follow GBM is still in dispute,
theoretical results based on such assumptions might be great dangers in practical
applications.

When trading, investors make decisions based on not only the variances but
the technical range as well. Technical range is well known in Japanese candle-
stick charting techniques and other technical indicators, see Nison (1991). Since
the technical range is widely adopted in practical trading, and commonly used
as a candidate risk measurement, and no academic literature, to our knowledge,
is devoted to its statistical properties, therefore, a thorough investigation of it
is quite necessary. It can be supposed that better understandings of technical
range would provide good guidance for investment, risk management. In this
paper, we investigate the properties of technical range for the first time, and
some interesting properties are discovered.

This paper is organized as follows. In Section 2, the definition of technical
range volatility is presented. The empirical statistical properties and dynamic
structure of technical range volatility are examined in Section 3. In Section 4,
Empirical examples using the CAC40, DAX, FTSE, HS, NIKKEI225, S&P500,
and STT data to estimate the model are presented, out-of-sample forecasts and
performance-evaluation are also performed. Section 5 concludes with consider-
ations on further investigation.

2 Defining Technical Range Volatility

Different from definition of R, ;, price range in technical analysis is defined as
the difference between two extreme values: the highest and the lowest prices
without taking logrithm over a fixed sampling interval. To avoid confusion, in
the following passage, the price range in technical sense is denoted as Ry:

Ry =H; — Ly (5)

The technical range R; gauges the range of the price trace, the larger is the Ry,
the more volatile is the price change,or in other words, large R; means large
volatility and great risk.

For investors, one of the main questions concerned is how volatile is price
change tomorrow. Is it smaller than, equal to, or larger than today’s price



change? Is the price change of tomorrow predictable based on historical infor-
mation?
For the first question, an intuitive answer is the technical range volatility:

TRV, = In(Ry) — In(Ry_1) (6)

where TRV, is the technical range volatility.

The meaning of (6) is obvious. If TRV, = 0, one get the same price change
between two consecutive time periods; if TRV; > 0, the price change on time t
is larger, otherwise, the price change on time t is smaller.

For the second question, the best answer is to investigate the dynamics of
the technical range volatility.

The first model that provides a systematic framework for return volatility
modeling is the ARCH model of Engle (1982), which is now employed in financial
engineering, broadly and successfully. The basic idea of the ARCH models is
based on two facts commonly observed in financial markets:

1. the shock a; of an asset return is serially uncorrelated, but depedent;

2. the dependence of a; can be described by a simple quadratic function of its
lagged values.

Specifically, an ARCH(m) model assumes that

ar = O (7)

o2 = ag+aal |+ .. +and (8)

where ¢, is a sequence of independent and indentically distributed random vari-
ables with zero mean and variance 1, oy > 0, and «;>0. The popularity of
ARCH maodels lies in that they root in commonly-observed facts.

A natural way for uncovering the commonly-observed facts is to investigate
broadly, which is just how the following passage is establised.

3 Uncovering the Facts

The rule that let the data themselves tell the story is well accepted in financial
studies. In this section, a broad investigation of different index data will be
presented.

3.1 Data Collection

We collect the daily data of the Standard and Poors 500 (S&P500), the the
Financial Times and the London Stock Exchange 100 (FTSE100), the Deutscher
Aktienindex (DAX), the Cotation Assiste en Continu 40 (CAC40), the Nikkei
heikin kabuka (NIKKEI225), the Hang Seng Index (HS), and the Singapore
Strait Times Index (STI) for the sample period from January 3, 2000 to July
31, 2009%. For each day, four pieces of the price information, opening, closing,

3 Different index with different number of observations are observed in the sample period.
Observations with highest and lowest prices equal are deleted, since they are not allowed for
defining the technical range volatiltiy



highest and lowest, are reported. The data set is also available from the website
“www. finance.yahoo.com”.

3.2 Descriptive Statistics

It is well acknowlegdged that the descriptive statistics of return volatility* based
on closing prices are skewed, heavily-tailed and far from Gaussian distribution.
It might be interesting to take a look at the descriptive statistics of the technical
range volatility.

In this subsection, the descriptive statistics of both the technical range
volatility and the return volatility are investiaged, and the results are presented
in Table 1.

The kurtosis of the return volatility are far away from 3, with the lowest one
equal to 7.110849 and the highest 10.77273, demonstrating strong evidence of
being heavy tail. The Jarque-Bera Statistics of the return volatility indicate no
evidence of Gaussian distribution at a significance level of 1%.

For the technical range volatility, the kurtosis are close 3, with highest equal
to 2.953310, and the lowest 2.614063, indicating evidence of Gaussian distribu-
tion. The Jarque-Bera Statistics of the technical range volatility suggest some
evidence of Guassian distribution. The hypothesis of Gaussian distribution can
not be rejected at a significance level of 5% for the CAC40, DAX, FTSE100, and
STT. For the other 3 index range volatility, the Jarque-Bera Statistics manifest
that they can be better approximated by Gaussian distribution compared with
the return volatility.

The Q-Q plots of each index are presented in Figure 1, 2, and the results
are consistent with the descriptive statistics in Table 1. The left panel in Figure
1 and 2 are the Q-Q plots of technical range volatility versus standard normal
distribution, and the right panel in Figure 1 and 2 are the Q-Q plots of return
volatility versus standard normal distribution.

[Insert Figure 1, 2 about here]

3.3 Dynamic Structure of TRV,

Time series analysis, despite its great success in engineering, physical and social
sciences, the ARMA model is rarely employed to describe the dynamic structures
of the financial markets. A large amount of literature has demonstrated that
based on the closing prices the stock returns are highly linearly uncorrelated,
and thus not linearly predicable.

In this subsection, the dynamic structure of TRV, is explored. Following
the routine steps of modeling the linear time series, we first plot in Figure 3 the
(T'RV;) series for each index, and the sample autocorrelation functions (ACFs)
and the sample partial autocorrelation functions (PACFs) of each index are

4The return volatility are denoted as 7¢.



Table 1: descriptive statistics of TRV;, and 4.

TRV, CAC40 DAX FTSE100 HS NIKKEI225 | S&P500 STI
Mean -0.000920 | -0.000580 | -0.000729 | -0.000266 | -0.000392 | -0.000558 | -0.001469
Median -0.000868 | -0.005868 | -0.002265 | -0.009112 | -0.037060 0.008838 | -0.003834
Max 2.102231 | 1.756442 | 1.528031 | 1.693519 1.849049 1.693677 | 1.727605
Min -1.473294 | -1.571412 | -1.568009 | -1.723746 | -1.435891 | -1.508724 | -1.517166
Std.Dev 0.494139 | 0.488635 | 0.479400 | 0.520317 0.519312 0.541170 | 0.492286
Skewness 0.040193 | 0.051161 | 0.027757 | 0.112211 0.214495 -0.020246 | 0.070082
Kurtosis 2.953310 | 2.796522 | 2.854822 | 2.854558 2.760211 2.614063 | 2.832316
Jarque-Bera | 0.879318 | 5.249977 | 2.434975 | 6.973034 23.67008 15.10892 | 4.754504
Probability | 0.644256 | 0.072441 | 0.295973 | 0.030607 0.000007 0.000524 | 0.092805

T CAC40 DAX FTSE100 HS NIKKEI225 | S&P500 STI
Mean -0.000224 | -9.68E-05 | -0.000152 | 7.11E-05 -0.000258 | -0.000161 | 1.21E-05
Median 0.000189 | 0.000678 | 0.000215 | 0.000339 -4.90E-05 0.000444 | 0.000362
Max 0.105946 | 0.107975 | 0.093842 | 0.134068 0.132346 0.109572 | 0.075305
Min -0.094715 | -0.074335 | -0.092646 | -0.135820 | -0.121110 | -0.094695 | -0.092155
Std.Dev 0.015905 | 0.016882 | 0.013512 | 0.017163 0.016513 0.014152 | 0.013632
Skewness 0.035088 | 0.080106 | -0.094542 | -0.024908 | -0.301668 | -0.091627 | -0.403164
Kurtosis 7.976503 | 7.110849 | 9.158113 | 10.77273 9.292219 10.62605 | 8.437205
Jarque-Bera | 2522.463 | 1717.862 | 3825.861 | 5991.430 3915.691 5838.417 | 3022.595
Probability | 0.000000 | 0.000000 | 0.000000 | 0.000000 0.000000 0.000000 | 0.000000




ploted in Figure 4, and 5. Plot in the left panel is the ACFs and the PACFs in
the right panel.

Surprisingly, unlike the technical range volatility the plots in Figure 3 indi-
cates little evidence of being clustering, and appear to be quite stationary with
no hints of evident heteroscedasticity.

The most surprising thing is that the all these plots in Figure 4,and 5 strongly
demonstrate that T'RV; can be described by a moving average model of order
q (MA(q)), as the ACFs is cut off after one lag and the PACFs decays at an
exponential rate. For modeling details, Hamilton [17] wrote an excellent book
on time series modeling. A moving average model of order q has the following
form:

TRV:;=C+er+ Br*ei—1+ ... + By *c1_yg 9)

where e; is the disturbance term, which is an independently, and identically
distributed series, or an i.i.d series for short.

Based on closing prices, it have been long observed that the asset rate is un-
correlated, but dependent, and the dependence can be well captured by ARCH-
like models. Based on technical range volatility, it is observed that this
risk measurement has the following common facts:

1. It follows the Gaussian distribution approrimatedly;
2. It can be described by a moving average model of order q, MA(q).

[Insert Figure 3, 4, and 5 about here]

4 Forecasting Technical Range Volatility Using
CAC40, DAX, FTSE, HS, NIKKEI225, S&P500,
and STI

In Section 3, it has been illustrated that the technical range volatility can be
captured by a moving average model of order q. In this section, model estima-
tion, out-of-sample predictation, and model evaluation will be performed to test
how well the TRV-MA model can describe the behavior of the technical range
volatility.®

4.1 Model Estimation

Following the routines of linear time series modeling, the unit root test hypoth-
esis is performed on each index technical range volatility. In this paper, the
Augmented Dickey-Fuller (ADF) tests without trend are adopted, and the test-
ing results are reported in Table 2. All these results in Table 2 reject the unit

5In this paper, the disturbance term ¢ is assumed to be Gaussian, therefore, the coefficients
can be estimated straightforward, any software that is capable of linear regression can be
employed.



root hypothesis at a significance level of 1%, confirming that the technical range
volatility can be treated as an weakly-stationary process.

[Insert Table 2 about here]

In this paper, EViews6 is employed to help estimate the coefficients, and
the results are reported in Table 3. All the coefficients estimated except for
the constant term C are statistically significant at a significance level of 5%,
and the adjusted R?s indicate that the TRV-MA model fit the data series fairly
good. The residual tests for each index series are performed, and the results
are presented in Table 4. It is easy to tell from the results in Table 4 that the
linear correlation hypothesis of residuals can be rejected at a significance level of
5%,and that the is weak linear correlation of residuals-squared at a significance
level of 5%, indicating that there is little evidence of heteroscedasticity, and
clustering. Also, it can be observed from the Jarque-Bera Statistics that it is
reasonable to assume normal distribution for the disturbance term.

[Insert Table 3, 4 about here]

4.2 Out-of-Sample Prediction and Evaluation

A volatility model must be able to forecast the volatility well; this is the central
requirement in almost all financial applications(Engle, 2001). Based on the
above results and (9), the out-of-sample forecasts are performed to test the
predicting ability of TRV-MA(q) model. Based on the models estimated in
Subsection 4.1, A one-step-forward rolling forecast with a horizon of 100 is
made on each index data, and the forecasting results are plotted in Figure 6,
and 7.

[Insert Figure 6, and 7 about here.”]

We have demonstrated in the introduction that if TRV; > 0, then In(R;) >
In(R;_1), indicating price range on date t is more volatile than that on date
t-1; if TRV; > 0, then In(R;) < In(R¢—1), indicating price range on date t is
less volatile than that on date t-1; otherwise, In(R;) = In(R;—1). We denote
the predicted value of TRV; > 0 base on information set I;_; as TI%Vt. If TRV
and TRV, have the same sign, they get the same ups and downs.®

Based on the meaning of the T RV;, a simple but direct way to evaluate the
model predictability is to calculate the number of right ups and downs. Denote
the number of right ups and downs as S, and the number of wrong ups and

6We denote the residual as res, the residual squared as res?, and Ljung-Box Q Statistics
as Q.

"The solid line represents the real value, and the dashdot line predicted value.

8When we say the same ups and downs, we mean that if the actual range on date t is larger
(smaller )than that on date t-1 then the predicted range is also larger (smaller) than that on
date t-1.



Table 2: Augmented Dickey-Fuller Test for CAC40, DAX, FTSE100, HS,
NIKKEI225, S&P500, and STT.

ADF Critical Value(1%) | Critical Value(5%)

TRV, of CAC40 —25.98450 -3.432853 -2.862532
(0.0000)

TRV; of DAX —25.82215 -3.432888 -2.862547
(0.0000)

TRV, of FTSE100 —25.35748 -3.432868 -2.862539
(0.0000)

TRV, of HS —19.99704 -3.433297 -2.862728
(0.0000)

TRV; of NIKKEI225 | —19.60032 -3.432954 -2.862576
(0.0000)

TRV; of S&P500 —26.55675 -3.432881 -2.862544
(0.0000)

TRV, of STI —25.72650 -3.432966 -2.862582
(0.0000)

Table 3: The regression results of CAC40, DAX, FTSE100, HS, NIKKEI225,

S&P500, and STI.

RVT; of CAC40 C 51 Bo Adjusted R?

MATR(1,9) —0.000437 —0.853459 | —0.046989 0.416096
(0.5773) (0.0000) (0.0000)

RVTt of DAX C /81 511 516 Adjusted R2

MATR(1,11,16) —3.69FE — 05 | —0.847885 | —0.027338 | —0.026134 0.432927
(0.9613) (0.0000) (0.0248) (0.0316)

RVTt of FTSE100 c 51 ,@9 BIS Adjusted R2

MATR(1,9,18) —2.25F — 05 | —0.835563 | —0.030674 | —0.032408 0.404074
(0.9816) (0.0000) (0.0111) (0.0050)

RVT; of HS C 51 B4 Adjusted R?

MATR(1,4) 5.00F — 05 | —0.828329 | —0.040978 0.426480
(0.9636) (0.0000) (0.0050)

RVT,; of NIKKEI225 C B Ba Adjusted R2

MATR(1,4) —0.000265 —0.819765 | —0.061487 0.397307
(0.7933) (0.0000) (0.0000)

RV,_Tt of S&P500 c ﬁl 62 66 ﬂ15 Adjusted R2

MATR(1,2,6,15) —7.32FE — 06 | —0.894603 | 0.057466 | —0.036519 | —0.041728 | 0.448265
(0.9918) (0.0000) (0.0081) (0.0044) (0.0002)

RVT, of STI C 51 Bo Adjusted R?

MATR(1,2) —0.001011 —0.744608 | —0.069940 0.355967
(0.5105) (0.0000) (0.0008)




Table 4: Residual tests for each index series.

TRV, CAC40 DAX FTSE100 HS NIKKEI225 | S&P500 STI
Mean -0.000830 | -0.000870 | -0.000769 | -0.000152 -0.000156 | -0.000518 | -0.000173
Median -0.0008214 | -0.014299 | -0.0011635 | -0.018638 -0.015195 0.006462 | -0.017173
Max 1.166113 1.535567 1.792125 1.512203 1.759898 1.848292 | 1.489997
Min -1.023919 | -1.076075 | -1.246614 | -1.123920 | -1.129560 | -1.469800 | -1.144431
Std.Dev 0.356536 0.368626 0.369852 0.395311 0.402096 0.401936 | 0.395091
Skewness 0.084600 0.167720 0.153443 0.229286 0.183440 0.021339 | 0.217246
Kurtosis 2.793983 3.106748 3.083288 2.993970 3.002409 3.075379 | 2.933574
Jarque-Bera | 3.974069 12.02486 9.770336 19.63026 12.63055 0.721591 | 18.42602
Probability 0.137101 0.002448 0.007558 0.000055 0.001808 0.697122 | 0.000100
Q(36) 23.305 42.041 27.960 26.101 41.973 38.295 26.926
(res) (0.916) (0.134) (0.716) (0.832) (0.164) (0.205) (0.801)
Q(36) 30.886 44.349 51.293 44.568 50.905 28.367 28.317
(res?) (0.612) (0.090) (0.022) (0.106) (0.031) (0.651) (0.742)

Table 5: The R, y for each index technical range volatility.
CAC40 | DAX | FTSE100 | HS | NIKKEI225 | S&P500 | STI
R, ¢ 5.25 4.26 2.70 2.85 3.76 5.67 2.13

downs as F, the ratio of S to F can be used as a criteria for model predictability
evaluation.

Re;=S/F (10)

where Ry ¢ is the ratio. The smaller is the R, y, the poorer is the performance
of a model:

R, s = 0, no predictability at all;

R, ; = oo, full predictability.

In this paper, the R, s is used to evaluate the TRV-MA model performance.
The R, ; values for each index technical range volatility are reported in Table
5.

9

According to the results in Table 5, the TRV-MA model does provide very
sharp predictability about range ups and downs.

5 Conclusion

In this paper, the empirical statistics and dynamic structure of the technical
range volatility were investigated , based on which some interesting findings
were discovered:

9Since this paper is mainly concerned about the technical range volatility not the variance,
a comparison between the ARCH-like models and the TRV-MA(q) model is not necessary.

10



1) Technical range volatility can be better approximated by Gaussian distribu-
tion than return volatility can;

2) The dynamic behavior of technical range volatility is governed by moving
average model.

Applications of TRV-MA model to other frequency of range intervals, say, every
hour, every week, or every month will provide further understandings of the per-
formance of the range model. Analysis using other asset prices, e.g., currency,
fixed-income securities, and derivative assets, will also be useful in improving
our understandings of the turbulence of the financial markets. Finally, we would
like to point out an interesting problems which need further studies:

Why the coefficients 1 are always negatively-valued? Can it be ex-
plained by neoclassical finance theory, or should we resort to the be-
havioral finance?

A thorough investigation of the technical range volatility would provide better
understandings of the market efficiency, and would provide better guidance for
investment and risk measurement.
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Figure 1: The Q-Q plots of the technical range volatility and the return volatility
for CAC40, DAX, and FTSE100.
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Figure 2: The Q-Q plots of the technical range volatility and the return volatility

for HS, NIKKIE225, S&P500, and STI.

HS HS
2 + 0.2 .
0 of )
+
Y -02
-4 -2 0 2 4 -4 -2 0 4
NIKKEI225 NIKKEI225
2 + 0.2
Lt
it
0 0
-
QY 4
-2 = -0.2
-4 -2 0 2 4 -4 -2 0 4
Standard and Poors 500 Standard and Poors 500
5 0.2
++
e L
0 0 o
+ |yt
-5 -0.2
-4 -2 0 2 4 -4 -2 0 4
STI STI
2 + 0.1
0 0
+4
-2 -0.1
-4 -2 0 2 4 -4 -2 0 4
Standard Normal Quantiles Standard Normal Quantiles
Figure 3: The T'RV; series for each index.
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Figure 4: The ACFs and PACFs of CAC40, DAX, and FTSE100.
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Figure 5: The ACFs and PACFs of HS, NIKKEI225, S&P500, STI.
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Figure 6: Forecasting results for CAC40, DAX, and FTSE
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Figure 7: Forecasting results for HS, NIKKEI225, S&P500, and STI
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