

TABLE OF CONTENTS

Introduction to ProBuilder___

Chapter I: Fundamentals___

Using ProBuilder... 2

Indicator creation quick tutorial...2

Programming window keyboard shortcuts..5

Specificities of ProBuilder programming language...6

Financial constants... 7

Price and volume constants adapted to the timeframe of the chart..7

Daily price constants... 8

Temporal constants... 8

Constants derived from price..12

The Undefined constant..12

How to use pre-existing indicators?..12

Variables... 13

Chapter II : Math Functions and ProBuilder instructions_______________________

Control Structures... 15

Conditional IF instruction...15
One condition, one result (IF THEN ENDIF)...15
One condition, two results (IF THEN ELSE ENDIF)..15
Sequential IF conditions..15
Multiple conditions (IF THEN ELSE ELSIF ENDIF)...16

Iterative FOR Loop..17
Ascending (FOR, TO, DO, NEXT)...17
Descending (FOR, DOWNTO, DO, NEXT)...18

Conditional WHILE Loop...19

BREAK.. 20
With WHILE.. 20
With FOR.. 20

CONTINUE... 21
With WHILE.. 21
With FOR.. 21

ONCE.. 22

Mathematical Functions..23

Common unary and binary Functions...23

Common mathematical operators...23

Charting comparison functions..23

Summation functions..24

Statistical functions...24

Logical operators.. 24

ProBuilder instructions.. 24

RETURN... 25

REM or //... 25

CustomClose.. 25

CALL... 26

AS... 26

COLOURED.. 26

Chapter III : Practical aspects___

Why and how to create binary or ternary indicators..28

Creating stop indicators to follow a position...29

StaticTake Profit STOP...30

Static STOP loss... 30

Inactivity STOP... 31

Trailing Stop.. 32

Chapter IV : Exercises___

Candlesticks patterns...33

Indicators.. 34

Glossary__

In t roduct ion to ProBui ld er

Introduction to ProBuilder
ProBuilder is ProrealTime's programming language. It allows you to create personalized technical
indicators, trading strategies (ProBacktest) or screening programs (ProScreener). A specific manual
exists for ProBacktest and ProScreener due to some specifics of each of these modules.

ProBuilder is a BASIC-type programming language, very easy to handle and exhaustive in terms of
available possibilities.

You will be able to create your own programs using the quotes from any tool provided by ProRealTime.
Some basic available elements include:

Opening of each bar : Open

Closing of each bar : Close

Highest price of each bar : High

Lowest price of each bar : Low

Volume of each bar : Volume

Bars or candlesticks are the common charting representations of real time quotes. Of course,
ProRealTime offers you the possibility of personalizing the style of the chart. You can use Renko, Kagi,
Haikin-Ashi and many other styles.

 ProBuilder evaluates the data of each price bar starting with the oldest one to the most recent one, and
then executes the formula developed in the language in order to determine the value of the indicators on
the current bar.

The indicators coded in ProBuilder can be displayed either in the price chart or in an individual one.

In this document, you will learn, step by step, how to use the available commands necessary to program
in this language thanks to a clear theoretical overview and concrete examples.

In the end of the manual, you will find a Glossary which will give you an overall view of all the ProBuilder
commands, pre-existing indicators and other functions completing what you would have learned after
reading the previous parts.

Users more confident in their programming skills can skip directly to chapter II or just refer to the
Glossary to quickly find the information they want.

For those who are less confident, we recommend to watch the video tutorials entitled "Programming
simple and dynamic indicators" and read the whole manual. Very accurate and guiding as well as highly
practically oriented, we are certain that you will master this programming language in no time.

Wishing you the best, good reading!

www.prorealtime.com 1 / 43

https://www.prorealtime.com/en/video-52
https://www.prorealtime.com/en/video-52

Chapter I : Fundamentals

Chapter I: Fundamentals

Using ProBuilder

Indicator creation quick tutorial

The programming zone of an indicator is available by clicking the button "Indicator/Backtest" which
can be found in the upper right corner of each graphic of the ProRealTime platform.

The indicators management window will be displayed. You will then be able to:

Display a pre-existing indicator

Create a personalized indicator, which can be used afterwards on any security

If you choose the second possibility, click on "New indicator" to access the programming window.

At that time, you will be able to choose between:

programming directly an indicator in the text zone designed for writing code or

use the help function by clicking on "Insert Function". This will open a new window in which
you can find all the functions available. This library is separated in 7 categories, to give you
constant assistance while programming.

www.prorealtime.com 2 / 43

Chapter I : Fundamentals

Let’s take for example the first specific ProBuilder element: the "RETURN" function (available in the
"Keywords" category (see the image below).

www.prorealtime.com 3 / 43

Chapter I : Fundamentals

Select the word "RETURN" and click on "Add". The command will be added to the programming
zone.

RETURN allows you to display the result

Suppose we want to create an indicator displaying the Volume. If you have already inserted the
function "RETURN", then you just need to click one more time on "Insert function". Next, click on
"Constants" in the "Categories" section, then in the right side of the window, in the section named
"Functions", click on "Volume". Finally, click on "Add".

Before clicking on "Validate program", you need to enter the name of your indicator. Here, we
named it "Volume DAX". To finish, click on "Validate program" and you will see your indicator
displayed below the price chart.

www.prorealtime.com 4 / 43

Chapter I : Fundamentals

Programming window keyboard shortcuts

The programming window has a number of useful features that can be accessed by keyboard
shortcuts starting with ProRealTime version 10 :

Select all (Ctrl + A) : Select all text in the programming window

Copy (Ctrl + C) : Copy the selected text

Paste (Ctrl + X) : Paste copied text

Undo (Ctrl + Z) : Undo the last action in the programming window

Redo (Ctrl + Y) : Redo the last action in the programming window

Find / Replace (Ctrl + F) : Find a text in the programming window / replace a text in the
programming window (this feature is case-sensitive)

Comment / Uncomment (Ctrl + R) : Comment the selected code / Uncomment the selected
code (commented code will be preceded by "//" or "REM" and colored gray. It will not be taken
into account when the code is executed).

For Mac users, the same keyboard shortcuts can be accessed with the "Apple" key in place of the
"Ctrl" key. Most of these features can also be accessed by right-clicking in the programming
window.

www.prorealtime.com 5 / 43

Chapter I : Fundamentals

Specificities of ProBuilder programming language

Specificities

The ProBuilder language allows you to use many classic commands as well as sophisticated tools
which are specific to technical analysis. These commands will be used to program from simple to very
complex indicators.

The main ideas to know in the ProBuilder language are:

It is not necessary to declare variables

It is not necessary to type variables

There is no difference between capital letters and small letters (but, as we will see later,
there is one exception)

We use the same symbol "=" for mathematic equality and to attribute a value to a variable

What does that mean ?

Declare a variable X means indicating its existence. In ProBuilder, you can directly use X without
having to declare it. Let’s take an example:

With declaration: let be variable X, we attribute to X the value 5

Without declaration: We attribute to X the value 5 (therefore, implicitly, X exists and the value 5 is
attributed to it)

In ProBuilder you just need to write: X=5

Type a variable means defining its nature. For example: is the variable a natural number (ex: 3;
8; 21; 643; …), a whole number which can be negative or positive (ex: 3; 632; -37; …), a decimal
number (ex: 1.76453534535…), a boolean (RIGHT=1, WRONG=0),…?

In ProBuilder, you can write your command with capital letters or small letters. For example, the
group of commands IF / THEN / ELSE / ENDIF can be written iF / tHeN / ELse / endIf (and many
other possibilities!)

Exception: When you decide to create a variable and re-use it later in the program, you must not
contradict the spelling you used during its creation. If you started to name your variable: "vARiaBLe"
and wish to re-use it in your program, then you must refer to it as "vARiaBLe", not as “variable” not
anything else.

Affect a value to a variable means give the variable a value. In order to understand this principle,
you must assimilate a variable with an empty box which you can fill with an expression (ex: a
number). The following diagram illustrate the Affectation Rule with the Volume value affected to the
variable X:

X Volume
As you can see, we must read from right to left: Volume is affected to X.

If you want to write it under ProBuilder, you just need to replace the arrow with an equal sign:

X = Volume
The same = symbol is used:

For the affectation of a variable (like the previous example)

As the mathematical binary operator (1+ 1= 2 is equivalent to 2 = 1 + 1).

www.prorealtime.com 6 / 43

Chapter I : Fundamentals

Financial constants

Before coding your personal indicators, you must examine the elements you need to write your code
such as the opening price, the closing price, etc.

These are the "fundamentals" of technical analysis and the main things to know for coding indicators.

You will then be able to combine them in order to draw out some information provided by financial
markets. We can group them together in 5 categories:

Price and volume constants adapted to the timeframe of the chart

These are the "classical" constants and also the ones used the most. They report by default the
value of the current bar (whatever the timeframe used).

Open : Opening price of each bar

High : Highest price of each bar

Low : Lowest price of each bar

Close : Closing price of each bar

Volume : The number of securities or contracts exchanged at each bar

Example : Range of the current bar

a = High
b = Low
MyRange = a - b
RETURN MyRange

If you want to use the information of previous bars rather than the current bar, you just need to add
between square brackets the number of bars that you want to go back into the past.

Let’s take for example the closing price constant:

Value of the closing price of the current bar: Close

Value of the closing price preceding the current bar: Close[1]

Value of the closing price preceding the nth bar preceding the current one: Close [n]

This rule is valid for any constant. For example, the opening price of the 2nd bar preceding the
current can be expressed as: Open[2].

The reported value will depend on the displayed timeframe of the chart.

www.prorealtime.com 7 / 43

Chapter I : Fundamentals

Daily price constants

Contrary to the constants adapted to the timeframe of the chart, the daily price constants refer to
the value of the day, regardless the timeframe of the chart.

Another difference between Daily price constants and constants adapted to the timeframe of the chart is
that the daily price constants use brackets and not square brackets to call the values of previous bars.

DOpen(n) : Opening price of the nth day before the one of the current bar

DHigh(n) : Highest price of the nth day before the one of the current bar

DLow(n) : Lowest price of the nth day before the one of the current bar

DClose(n) : Closing price of the nth day before the one of the current bar

Note: "n" can be equal to 0 if we want to call the value for today as shown in the example below.

Day-traders know the importance of the close of the day before and of the open that is a moment of
emotion when the novices enter or exit the market.

The high and low of the previous days can indicate the price changes of the next day.

Example : Daily Range

a = DHigh(0)
b = DLow(0)
MyRange = a - b
RETURN MyRange

The constants adapted to the timeframe of the chart use square brackets while the daily price
constants use brackets.

Close[3] The closing price 3 periods ago

 Dclose(3) The closing price 3 days ago

Temporal constants

Time is often a neglected component of technical analysis. However traders know very well the
importance of some time periods in the day or dates in the year. It is possible in your programs to
take into account time and date and improve the efficiency of your indicators. The Temporal
constants are described hereafter:

Date : indicates the date of the close of each bar in the format YearMonthDay (YYYYMMDD)

Temporal constants are considered by ProBuilder as whole numbers. The Date constant, for
example, must be used as one number made up of 8 figures.

Let’s write down the program:

RETURN Date

Suppose today is the 4th of July 2008, the program above will return the value 20080704 for today
and 20080703 for yesterday and so on for previous days.

Date under ProBuilder is then based on the following scale of value:

One millennium is equivalent to 10 000 000 date units

One century is equivalent to 1 000 000 date units

One decade is equivalent to 100 000 date units

One year is equivalent to 10 000 date units

Ten months are equivalent to 1 000 date units (do not exceed 12 months)

One month is equivalent to 100 date units (do not exceed 12 months)

Ten days are equivalent to10 date units (do not exceed 31 seconds)

One day is equivalent to 1 date unit (do not exceed 31 seconds)

www.prorealtime.com 8 / 43

Chapter I : Fundamentals

Time : indicates the hour of the closing price of each bar in the format HourMinuteSecond
(HHMMSS)

Example:

RETURN Time

This indicator shows us the closing time of each bar in the format HHMMSS:

It is also possible to use Time and Date in the same indicator to do analysis or display results at a
precise moment. In the following example, we want to limit our indicator to the date of October 1st
at precisely 9am and 1 second:

a = (Date = 20081001)
b = (Time = 090001)
RETURN (a AND b)

Similar to Date, Time uses the following scale of value:

Ten hours are equivalent to 100 000 time units (do not exceed 23 hours)

One hour is equivalent to 10 000 units (do not exceed 23 hours)

Ten minutes are equivalent to 1 000 time units (do not exceed 59 minutes)

One minute is equivalent to 100 time units (do not exceed 59 minutes)

Ten seconds are equivalent to 10 time units (do not exceed 59 seconds)

One second is equivalent to 1 time unit (do not exceed 59 seconds)

The following constants work the same way:

Minute : Minute of the close of each bar (from 0 to 59): Only for intraday charts.

Hour : Hour of the close of each bar (from 0 to 23): Only for intraday charts.

Day : Day of the months of the closing price of each bar (from 1 to 28 or 29 or 30 or 31)

Month : Month of the closing price of each bar (from 1 to 12)

Year : Year of the closing price of each bar

DayOfWeek : Day of the Week of the close of each bar (does not use weekend days)
(1=Monday, 2=Tuesday, 3=Wednesday, 4=Thursday, 5=Friday)

Example:

a = (Hour > 170000)
b = (Day = 30)
RETURN (a AND b)

www.prorealtime.com 9 / 43

Chapter I : Fundamentals

CurrentHour : Current Hour (of the local market)

CurrentMinute : Current Minute (of the local market)

CurrentMonth : Current Month (of the local market)

CurrentSecond : Current Second (of the local market)

Today : Current Date (of the local market)

CurrentTime : Current HourMinuteSecond (of the local market)

CurrentYear : Current Year (of the local market)

CurrentDayOfWeek : Current Day of the week with the market time zone as a reference

The difference between the "Current" constants and the "non-Current" constants presented above
is the "Current" aspect.

The following picture brings to light that difference (applied on the CurrentTime and Time
constants). We can highlight the fact that for "Current" constants, we must set aside the time axis
and only take in consideration the displayed value (the value of the current time is displayed over
the whole history of the chart).

Time indicates the closing time of each bar.

CurrentTime indicates the current market time.

If you want to set up your indicators with counters (number of days passed, number of bars passed
etc…), you can use the Days, BarIndex and IntradayBarIndex constants.

Days : Counter of days since 1900

This constant is quite useful when you want to know the number of days that have passed. It is
particularly relevant when you work with an (x) tick or (x) volume view.

The following example shows you the number of days passed since 1900.

RETURN Days

www.prorealtime.com 10 / 43

Chapter I : Fundamentals

BarIndex : Counter of bars since the beginning of the displayed historical data

The counter starts from left to right and counts each bar, including the current bar. The first bar
loaded is considered bar number 0. Most of the time, BarIndex is used with the IF instruction
presented later in the manual.

IntradayBarIndex : Counter of intraday bars

The counter displays the number of bars since the beginning of the day and then resets to zero at
the beginning of every new day. The first bar of the counter is considered bar number 0.

Let’s compare the two counter constants with two separated indicators:

RETURN BarIndex

and

RETURN IntradayBarIndex

We can clearly see the difference between them: IntradayBarIndex reset itself to zero at the
beginning of every new day.

www.prorealtime.com 11 / 43

Chapter I : Fundamentals

Constants derived from price

These constants allows you to get more complete information compared to Open, High, Low and
Close, since they combine those prices so to emphasize some aspects of the financial market
psychology shown on the current bar.

Range : difference between High and Low.

TypicalPrice : average between High, Low and Close

WeightedClose : weighted average of High (weight 1), Low (weight 1) and Close (weight 2)

MedianPrice : average between High and Low

TotalPrice : average between Open, High, Low and Close

Le Range shows the volatility of the current bar, which is an estimation of how nervous investors are.

You can create an indicator with one of the constants above only by creating a one-line indicator
"RETURN Range" for example or use the constants to create a more complicated indicator.

The WeightedClose focuses on the importance of the closing price bar (even more important when
applied to daily bars or weekly bars).

The TypicalPrice and TotalPrice emphasize intraday financial market psychology since they take
3 or 4 predominant prices of the current bar into account (see above).

MedianPrice uses the Median concept (the middle number) instead of the Average concept which is
quite useful when trying to create theoretical models that don’t take investors psychology into account.

Range in % :

MyRange = Range
Calcul = (MyRange / MyRange[1] - 1) * 100
RETURN Calcul

The Undefined constant

The keyword Undefined allows you to indicate to the software not to display the value of the
indicator.

Undefined : undefined data (equivalent to an empty box)

You can find an example later in the manual.

How to use pre-existing indicators?

Up until now, we have described you the possibilities offered by ProBuilder concerning constants and
how to call values of bars of the past using these constants. Pre-existing indicators (the ones already
programmed in ProRealTime) function the same way and so do the indicators you will code.

ProBuilder indicators are made up of three elements which syntax is:

NameOfFunction [calculated over n periods] (applied to which price or indicator)

When using the "Insert Function" button to look for a ProBuilder function and then enter it into your
program, default values are given for both the period and the price or indicator argument.

Average[20](Close)

We can of course modify these values according to our preferences; for example, we can replace the
20 bars defined by default with 100 bars. In the same way, we can change the price argument "Close"
with "Open" or "DOpen(6)" – the open of the daily bar 6 days ago:

Average[20](Dopen(6))

www.prorealtime.com 12 / 43

Chapter I : Fundamentals

Here are some sample programs:

Program calculating the exponential moving average over 20 periods applied to the closing
price:

RETURN ExponentialAverage[20](Close)

Program calculating the weighted moving average over 20 bars applied to the typical price

mm = WeightedAverage[20](TypicalPrice)
RETURN mm

Program calculating the Wilder average over 100 candlesticks applied to the Volume

mm = WilderAverage[100](Volume)
RETURN mm

Program calculating the MACD (histogram) applied to the closing price. The MACD is built with the
difference between the 12-period exponential moving average (EMA) minus the 26-period EMA. Then,
we make a smoothing with an exponential moving average over 9 periods and applied to the MACD
line to get the Signal line. Finally, the MACD is the difference between the MACD line and the Signal
line.

REM Calculation of the MACD line
MACDLine = ExponentialAverage[12](Close) - ExponentialAverage[26](Close)
REM Calculation of the MACD Signal line
MACDSignalLine = ExponentialAverage[9](MACDLine)
REM Calculation of the difference between the MACD line and its Signal
MACDHistogramme = MACDLine – MACDSignalLine
RETURN MACDHistogramme

Variables

When you code an indicator, you may want to introduce variables. The variables option in the upper-
right corner of the window allows you to attribute a default value to an undefined variable and
manipulate it in the "settings" window of the indicator without modifying the code of your program.

Let’s calculate a simple moving average on 20 periods:

RETURN Average[20](Close)

www.prorealtime.com 13 / 43

Chapter I : Fundamentals

In order to modify the number of periods for the calculation directly from the indicator "Settings"
interface, replace 20 with the variable "n":

RETURN Average[n](Close)

Then, click on "Add" in "Variables" and another window named "Variable definition" will be displayed.
Fill it in as follows:

Click on the "OK" button. Then, in the "Settings" window (in this case "Settings MyMovingAverage")
you will see a new parameter which will allow you to modify the number of periods in the calculation of
the moving average:

Of course, it is possible to do the same with many variables giving you the possibility to manipulate
multiple parameters at the same time for the same indicator.

www.prorealtime.com 14 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

Chapter II : Math Functions and ProBuilder instructions

Control Structures

Conditional IF instruction

The IF instruction is used to make a conditioned action, meaning executing the action if one or
more conditions is met.

The structure is made up of the instructions IF, THEN, ELSE, ELSIF, ENDIF, which are used
depending on the complexity of the conditions you defined.

One condition, one result (IF THEN ENDIF)

We can look for a condition and define an action if that condition is true. On the other hand, if the
condition is not valid, then nothing will happen (By default, Result = 0).

In this example, if current price is greater than the 20-period moving average, then we display:
Result = 1 and display this on the chart.

IF Close > Average[20](Close) THEN

 Result = 1

ENDIF

RETURN Result

IF Price > 20-period moving average then

Result = 1, otherwise Result =0

end of the IF condition

Display the value of result on the chart

RETURN must always be followed with the storage variable containing the result in order to
display the result on the chart (in the last example we use the variable "Result").

One condition, two results (IF THEN ELSE ENDIF)

We can also define a different result if the condition is not true. Let us go back to the previous
example: if the price is greater than the moving average on 20 periods, then display 1, else,
displays -1.

IF Close > Average[20](Close) THEN
 Result = 1
ELSE
 Result = -1
ENDIF
RETURN Result

NB: We have created a binary indicator. For more information, see the section on binary and
ternary indicators later in this manual.

Sequential IF conditions

You can create sub-conditions after the validation of the main condition, meaning conditions
which must be validated one after another. For that, you need to build a sequence of IF
structures, one included in the other. You should be careful to insert in the code as many ENDIF
as IF. Example:

Double conditions on moving averages :

IF (Average[12](Close) - Average[20](Close) > 0) THEN
 IF ExponentialAverage[12](Close) - ExponentialAverage[20](Close) > 0 THEN
 Result = 1
 ELSE
 Result = -1
 ENDIF
ENDIF
RETURN Result

www.prorealtime.com 15 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

Multiple conditions (IF THEN ELSE ELSIF ENDIF)

You can define a specific result for a specific condition. The indicator reports many states: if
Condition 1 is valid then do Action1; else, if Condition 2 is valid, then do Action 2 …if none of the
previously mentioned conditions are valid then do Action n.

This structure uses the following instructions: IF, THEN, ELSIF, THEN.... ELSE, ENDIF.

The syntax is :

IF (Condition1) THEN
 (Action1)
ELSIF (Condition2) THEN
 (Action2)
ELSIF (Condition3) THEN
 (Action3)
...
...
...
ELSE
 (Action n)
ENDIF

You can also replace ELSIF with ELSE IF but your program will take longer to write. Of course,
you will have to end the loop with as many instance of ENDIF as IF. If you want to make multiple
conditions in your program, we advise you to use ELSIF rather than ELSE IF for this reason.

Example: detection of bearish and bullish engulfing lines using the Elsif instruction

This indicator displays 1 if a bullish engulfing line is detected, -1 if a bearish engulfing line is
detected, and 0 if neither of them is detected.

// Detection of a bullish engulfing line
Condition1 = Close[1] < Open[1]
Condition2 = Open < Close[1]
Condition3 = Close > Open[1]
Condition4 = Open < Close

// Detection of a bearish engulfing line
Condition5 = Close[1] > Open[1]
Condition6 = Close < Open
Condition7 = Open > Close[1]
Condition8 = Close < Open[1]

IF Condition1 AND Condition2 AND Condition3 AND Condition4 THEN
 a = 1
ELSIF Condition5 AND Condition6 AND Condition7 AND Condition8 THEN
 a = -1
ELSE
 a = 0
ENDIF
RETURN a

www.prorealtime.com 16 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

Example: Resistance Demarks pivot

IF DClose(1) > DOpen(1) THEN
 Phigh = DHigh(1) + (DClose(1) - DLow(1)) / 2
 Plow = (DClose(1) + DLow(1)) / 2
ELSIF DClose(1) < DOpen(1) THEN
 Phigh = (DHigh(1) + DClose(1)) / 2
 Plow = DLow(1) - (DHigh(1) - DClose(1)) / 2
ELSE
 Phigh = DClose(1) + (DHigh(1) - DLow(1)) / 2
 Plow = DClose(1) - (DHigh(1) - DLow(1)) / 2
ENDIF
RETURN Phigh , Plow

Example: BarIndex

In the chapter I of our manual, we presented BarIndex as a counter of bars loaded. BarIndex is
often used with IF. For example, if we want to know if the number of bars in your chart exceeds
23 bars, then we will write:

IF BarIndex <= 23 THEN
 a = 0
ELSIF BarIndex > 23 THEN
 a = 1
ENDIF
RETURN a

Iterative FOR Loop

FOR is used when we want to exploit a finite series of elements. This series must be made up of
whole numbers (ex: 1, 2, 3, etc…) and ordered.

Its structure is formed of FOR, TO, DOWNTO, DO, NEXT. TO and DOWNTO are used depending
on the order of appearance in the series of the elements (ascending order or descending order).
We also highlight the fact that what is between FOR and DO are the extremities of the interval to
scan.

Ascending (FOR, TO, DO, NEXT)

FOR (Variable = BeginningValueOfTheSeries) TO EndingValueOfTheSeries DO
 (Action)
NEXT

Example: Smoothing of a 12-period moving average

Let’s create a storage variable (Result) which will sum the 11, 12 and 13-period moving
averages.

Result = 0
FOR Variable = 11 TO 13 DO
 Result = Average[Variable](Close) + Result
NEXT
REM Let’s create a storage variable (AverageResult) which will divide Result by
3 and display average result. Average result is a smoothing of the 12-period
moving average.
AverageResult = Result / 3
RETURN AverageResult

www.prorealtime.com 17 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

Let’s see step by step how the program does the calculation:

Mathematically, we want to calculate the average of the moving averages calculated on 11, 12
and 13 periods.

Period will then get successively the values 11, 12 and 13 (FOR always works with whole
numbers only).

Result = 0

When Period = 11 : The new Result = the 11 - period moving average + the previous value of result (0).

The counter receives its next value

When Period = 12 : The new Result = the 12 - period moving average + the previous value of result.

The counter receives its next value

When Period = 13 : The new Result = the 13 - period moving average + the previous value of result.

13 is the last value of the counter.

We end the “FOR” loop with the “NEXT” instruction.

We then display AverageResult

To sum it up, variable will, first of all, get the beginning value of the series, then variable will receive the
next one (the last one + 1) and so on until the very last value of the series. To finish, we end the loop.

Example: Average of the highest price over the 20 last bars
MAhigh = 0

SUMhigh = 0

IF BarIndex < 20 THEN

 MAhigh = Undefined

ELSE

 FOR i = 0 TO 20 DO

 SUMhigh = High[i]+SUMhigh

 NEXT

ENDIF

MAhigh = SUMhigh / 20

RETURN MAhigh

If there are not yet 20 periods displayed
Then we attribute to MAhigh value "Undefined" (not displayed)
ELSE
FOR values of i between 1 to 20
We sum the 20 last "High" values

We calculate the average for the last 20 periods and
store the result in MAhigh
We display MAhigh

Descending (FOR, DOWNTO, DO, NEXT)

To make a descending loop, we use: FOR, DOWNTO, DO, NEXT.

Its syntax is:

FOR (Variable = EndingValueOfTheSeries) DOWNTO BeginningValueOfTheSeries DO
 (Action)
NEXT

Let us go back to the previous example (the 20-period moving average of "High") :

We can notice that we have just inverted the extremities of the scanned interval.

MAhigh = 0
SUMhigh = 0
IF BarIndex = 0 THEN
 MAhigh = Undefined
ELSE
 FOR i = 20 DOWNTO 1 DO
 SUMhigh = High[i] + SUMhigh
 NEXT
ENDIF
MAhigh = SUMhigh / 20
RETURN Mmhigh

www.prorealtime.com 18 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

Conditional WHILE Loop

WHILE is used to keep doing an action while a condition remains true. You will see that this
instruction is very similar to the simple conditional instruction IF/THEN/ENDIF.

This structure uses the following instructions: WHILE, (DO optional), WEND (end WHILE)

Its syntax is:

WHILE (Condition) DO
 (Action 1)
 …
 (Action n)
WEND

Example:

Result = 0
WHILE Close > Average[20](Close) DO
 Result = 1
WEND
RETURN Result

Example: indicator calculating the number of consecutive increases

Increase = (Close > Close[1])
Count = 0
WHILE Increase[Count] DO
 Count = Count + 1
WEND
RETURN Count

General comment on the conditional instruction WHILE

Similarly to IF, the program will not process the conditional loop if the condition is unknown.

For example:

Count = 0
WHILE i <> 11 DO
 i = i + 1
 Count = Count + 1
WEND
RETURN Count

L’instruction WHILE ne connaît pas la valeur d’origine de i donc ne peut pas tester si i est bien égal
à 10.

The WHILE instruction does not recognize the value of i. Therefore, it cannot test whether i is equal
to 10 or not and the loop will not be processed, hence the count is equal to 0.

The correct code would be:

i = 0
Count = 0
WHILE i <> 11 DO
 i = i + 1
 Count = Count + 1
WEND
RETURN Count

In this code, i is initialized. The loop will then work correctly since the condition for beginning the
loop is valid.

www.prorealtime.com 19 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

BREAK

The BREAK instruction allows you to make a forced exit out of a WHILE loop or a FOR loop.
Combinations are possible with the IF command, inside a WHILE loop or a FOR loop.

With WHILE

When we try to get out of a conditional WHILE loop without waiting for a situation where the
condition is not valid, we use BREAK.

Its syntax is:

WHILE (Condition) DO
 (Action)
 BREAK
WEND

Let’s take for example an indicator showing increases of the price:

REM Trend indicator: indicates increases
REM When the indicator is equal to 1 then an increase is detected, else, the
indicator is equal to 0.
Increase = (Close - Close[1]) > 0
Indicator = 0
i = 0
WHILE Increase[i] DO
 Indicator = Indicator + 1
 i = i + 1
 BREAK
WEND
RETURN Indicator

In this code, if BREAK wasn’t used, the loop would have resumed and the result would be
another trend indicator which would have cumulated increases.

With FOR

When we try to get out of an iterative FOR loop, without reaching the last (or first) value of the
series, we use BREAK.

FOR (Variable = BeginningValueOfTheSeries) TO EndingValueOfTheSeries DO
 (Action)
 BREAK
NEXT

Let’s take for example an indicator cumulating increases of the volume of the last 19 periods.
This indicator will be equal to 0 if the volume decreases.

Count = 0
FOR i = 0 TO 19 DO
 IF (Volume[i] > Volume[i + 1]) THEN
 Count = Count + 1
 ELSE
 BREAK
 ENDIF
NEXT
RETURN Count

In this code, if BREAK weren’t used, the loop would have continued until 19 (last element of the
series) even if the condition count is not valid.

However, with BREAK, as soon as the condition is valid, the result becomes 0.

www.prorealtime.com 20 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

CONTINUE

The CONTINUE instruction allows you to resume the program reader at the line where WHILE or
FOR is written, thus without restarting completely the loop (any incremented counter will thus keep
its value and not be reset to 0). This command is often used with BREAK, either to leave the loop
(BREAK) or to stay in the loop (CONTINUE).

With WHILE

Let’s create a program counting the number of candlesticks whose close and open are greater
than those of the candlestick preceding them. If the condition is not valid, then the counter will be
reset to 0.

Increase = Close > Close[1]
Count = 0
WHILE Open < Open[1] DO
 IF Increase[Count] THEN
 Count = Count + 1
 CONTINUE
 ENDIF
BREAK
WEND
RETURN Count

When using CONTINUE, if the IF condition is not valid, then the WHILE loop is not ended. This
allows us to count the number of patterns detected with this condition. Without the CONTINUE
instruction, the program would leave the loop, even if the IF condition is validated. Then, we
would not be able to continue counting the number of patterns detected and the result would be
binary (1, 0).

With FOR

Let’s create a program counting the number of candlesticks whose close and open are greater
than those of the candlestick preceding them. If the condition is not valid, then the counter will be
reset to 0.

Increase = Close > Close[1]
Count = 0
FOR i = 1 TO BarIndex DO
 IF Increase[Count] THEN
 Count = Count + 1
 CONTINUE
 ENDIF
BREAK
NEXT
RETURN Count

FOR gives you the possibility to test the condition over all the data loaded. When used with
CONTINUE, if the IF condition is validated, then we do not leave the FOR loop and resume it
with the next value of i. This is how we count the number of patterns detected by this condition.

Without CONTINUE, the program would leave the loop, even if the IF condition is validated.
Then, we would not be able to count the number of patterns detected and the result would be
binary (1, 0).

www.prorealtime.com 21 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

ONCE

The ONCE instruction is used to initialize a variable at a certain value "only ONE TIME".

Knowing that for the whole program, the language will read the code for each bar displayed on the
chart before returning the result, you must then keep in mind that ONCE :

Is processed only one time by the program including the second reading.

During the second reading of the program, it will stock the values calculated in the previous
reading.

To fully understand how this command works, you need to perceive how the language
processes the code, hence the usefulness of the next example.

These are two programs returning respectively 0 and 15 and which only difference is the ONCE
command added:

Program 1 Program 2
1
2
3
4
5
6
7

Count = 0
i = 0
IF i <= 5 THEN
 Count = Count + i
 i = i + 1
ENDIF
RETURN Count

1
2
3
4
5
6
7

ONCE Count = 0
ONCE i = 0
IF i <= 5 THEN
 Count = Count + i
 i = i + 1
ENDIF
RETURN Count

Let’s see how the language read the code.

Program 1 :

For the first bar, the language will read line 1 (L1: Count = 0; i = 0), then L2, L3, L4, L5 and L6
(Count = 0; i = 1). For the next bar, the program starts at the beginning and both i and count are set
to 0, so count will always return 0 for every bar.

Program 2 :

For the first bar, the language will read L1 (Count = 0; i = 0), then L2, L3, L4, L5, L6 (Count = 0; i =
1). When it arrives at the line "RETURN", it restarts the loop to calculate the value of the next bar
starting from L3 (the lines with ONCE are processed only one time), L4, L5, L6 (Count = 1; i =
2), then go back again (Count = 3; i = 3) and so forth to (Count = 15; i = 6). Arrived at this result, the
IF loop is not processed anymore because the condition is not valid anymore; the only line left to
read is L7, hence the result is 15 for the remaining bars loaded.

www.prorealtime.com 22 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

Mathematical Functions

Common unary and binary Functions

Let’s focus now on the Mathematical Functions. You will find in ProBuilder the main functions
known in mathematics. Please note that a and b are examples and can be numbers or any other
variable in your program.

MIN(a, b) : calculate the minimum of a and b

MAX(a, b) : calculate the maximum of a and b

ROUND(a) : round a to the nearest whole number

ABS(a) : calculate the absolute value of a

SGN(a) : shows the sign of a (1 if positive, -1 if negative)

SQUARE(a) : calculate a squared

SQRT(a) : calculate the square root of a

LOG(a) : calculate the Neperian logarithm of a

EXP(a) : calculate the exponent of a

COS(a) : calculate the cosine of a

SIN(a) : calculate the sine of a

TAN(a) : calculate the tangent of a

ATAN(a) : calculate the arc-tangent of a

Let’s code the example of the normal distribution in mathematics. It’s interesting because it use the
square function, the square root function and the exponential function at the same time:

REM Normal Law applied to x = 10, StandardDeviation = 6 and MathExpectation = 8
REM Let’s define the following variables in the variable option:
StandardDeviation = 6
MathExpectation = 8
x = 10
Indicator = EXP((1 / 2) * (SQUARE(x - MathExpectation) / StandardDeviation)) /
(StandardDeviation * SQRT(2 / 3.14))
RETURN Indicator

Common mathematical operators

a < b : a is strictly less than b

a <= b or a =< b : a is less than or equal to b

a > b : a is strictly greater than b

a >= b or a => b : a is greater than or equal to b

a = b : a is equal to b (or b is attributed to a)

a <> b : a is different from b

Charting comparison functions

a CROSSES OVER b : the a curve crosses over the b curve

a CROSSES UNDER b : the a curve crosses under the b curve

www.prorealtime.com 23 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

Summation functions

cumsum : Calculates the sum of a price or indicator over all bars loaded on the chart

The syntax of cumsum is:

cumsum (price or indicator)

Ex : cumsum(Close) calculates the sum of the close of all the bars loaded on the chart.

summation : Calculates the sum of a price or indicator over the last n bars

The sum is calculated starting from the most recent value (from right to left)

The syntax of summation is:

summation[number of bars](price or indicator)

Ex: summation[20](Open) calculates the sum of the open of the last 20 bars.

Statistical functions

The syntax of all these functions is the same as the syntax for the Summation function, that is:

lowest[number of bars](price or indicator)

lowest : displays the lowest value of the price or indicator written between brackets, over the
number of periods defined

highest : displays the highest value of the price or indicator written between brackets, over
the number of periods defined

STD : displays the standard deviation of a price or indicator, over the number of periods defined

STE : displays the standard error of a price or indicator, over the number of periods defined

Logical operators

As any programming language, it is necessary to have at our disposal some Logical Operators to
create relevant indicators. These are the 4 Logical Operators of ProBuilder:

NOT(a) : logical NO

a OR b : logical OR

a AND b : logical AND

a XOR b : exclusive OR

Calculation of the trend indicator: On Balance Volume (OBV) :

IF NOT((Close > Close[1]) OR (Close = Close[1])) THEN
 MyOBV = MyOBV - Volume
ELSE
 MyOBV = MyOBV + Volume
ENDIF
RETURN MyOBV

ProBuilder instructions

RETURN : displays the result

CustomClose : displays a customizable price value; by default, this price is "Close"

CALL : calls another ProBuilder indicator to use in your current program

AS : names the result displayed

COLOURED : colors the displayed curve in with the color of your choice

www.prorealtime.com 24 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

RETURN

We have already seen in chapter I how important the RETURN instruction was. It has some
specific properties we need to know to avoid programming errors.

The main points to keep in mind when using RETURN in order to write a program correctly are that
Return is used:

One and only one time in each ProBuilder program

Always at the last line of code

Optionally with other functions such as AS and COLOURED

To display many results; we write RETURN followed with what we want to display and
separated with a comma (example : RETURN a,b)

REM or //

REM allows you to write remarks or comments inside the code. They are mainly useful to
remember how a function you coded works. These remarks will be read but of course not
processed by the program. Let’s illustrate the concept with the following example :

REM This program returns the simple moving average over 20 periods applied to the
closing price
RETURN Average[20](Close)

Don‘t use special characters (examples: é,ù,ç,ê…) in ProBuilder, even in the REM section

CustomClose

CustomClose is a constant allowing you to display the Close, Open, High, Low constants and
many others, which can be customized in the Settings window of the indicator.

Its syntax is the same as the one of the constants adapted to the timeframe of the chart:

CustomClose[n]

Example:

// Displays the average over 20 periods applied to CustomClose
RETURN CustomClose[2]

By clicking on the wrench in the upper left corner of the chart, you will see that it is possible to
customize the prices used in the calculation (on the diagram, circled in yellow).

www.prorealtime.com 25 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

CALL

CALL allows you to use a personal indicator you have coded before in the platform.

The quickest method is to click “Insert Function” then select the "User Indicators" category and then
select the name of the indicator you want to use and click "Add".

For example, imagine you have coded the Histogram MACD and named it HistoMACD.

Select your indicator and click on "Add". You will see in the programming zone:

myHistoMACD = CALL HistoMACD

The software gave the name "myHistoMACD" to the indicator "HistoMACD".

This means that for the rest of your program, if you want to use the HistoMACD indicator, you will
have to call it "myHistoMACD".

AS

The keyword AS allows you to name the different results displayed. This instruction is used with
RETURN and its syntax is:

RETURN Result1 AS "Curve Name", Result2 AS "Curve Name", …

The advantage of this command is that it makes it easier to identify the different curves on your
chart.

Example:

a = ExponentialAverage[200](Close)
b = WeightedAverage[200](Close)
c = Average[200](Close)
RETURN a AS "Exponential Average", b AS "Weighted Average", c AS "Arithmetical
Average"

COLOURED

COLOURED is used after the RETURN command to color the curve displayed with the color of
your choice, defined with the RGB norm (red, green, blue). These are the main colors of this norm:

Color
RGB Value

(red, green, blue)
English

(0, 0, 0) Black

(255, 255, 255) White

(255, 0, 0) White

(0, 255, 0) Green

(0, 0, 255) Blue

(255, 255, 0) Yellow

(0, 255, 255) Cyan

(255, 0, 255) Magenta

www.prorealtime.com 26 / 43

Chapter I I : Math Funct ions and ProBui lder inst ru ct ions

The syntax of the Coloured command is:

RETURN Indicator COLOURED(Red, Green, Blue)

The AS command can be associated with the COLOURED(. , . , .) command. This association
must be used in this order:

RETURN Indicator COLOURED(Red, Green, Blue) AS "Name Of The Curve"

Let’s go back to the previous example and insert COLOURED in the "RETURN" line.

a = ExponentialAverage[200](Close)
b = WeightedAverage[200](Close)
c = Average[200](Close)
RETURN a COLOURED(255, 0, 0) AS "Exponential Moving Average", b COLOURED(0, 255,
0) AS "WeightedMoving Average", c COLOURED(0, 0, 255) AS "Simple Moving Average"

This picture shows you the color customization of the result.

www.prorealtime.com 27 / 43

Chapter I I I : Pract ica l aspect s

Chapter III : Practical aspects

Why and how to create binary or ternary indicators

A binary or ternary indicator is an indicator which returns only two or three possible results (usually 0, 1
or -1). Its main purpose in a trading context is to identify very quickly the pattern or conditions you
defined in your indicator with a visual signal.

Purpose of a binary or ternary indicator:

Detect the main candlestick patterns (ex: Harami, Morning Stars, Hammers, …)

Make it easier to read the chart when trying to identify specific conditions

Place simple 1-condition alerts on an indicator which includes several conditions you will have
more alerts at your disposal!

Detect complex conditions on historical data loaded

Make it easier to create a backtest

Furthermore, you can find in the ProBacktest manual many examples of stops to be inserted in
investment strategies.

Binary or ternary indicators are built essentially with IF structures. We advise you to read the IF section
before continuing your reading.

Lets look at an example of a binary and ternary indicator:

Binary Indicator: hammer detection hammer

Hammer = Close>Open AND High = Close AND (Open-Low) >= 3*(Close-Open)
IF Hammer THEN
 Result = 1
ELSE
 Result = 0
ENDIF
RETURN Result AS "Hammer"

Ternary Indicator: Golden Cross and Death Cross detection

a = ExponentialAverage[10](Close)
b = ExponentialAverage[20](Close)
c = 0
// Golden Cross detection
IF a CROSSES OVER b THEN
 c = 1
ENDIF
// Death Cross detection
IF a CROSSES UNDER b THEN
 c = -1
ENDIF
RETURN c

www.prorealtime.com 28 / 43

Chapter I I I : Pract ica l aspect s

Note: we have displayed the exponential moving average over 10 and 20 periods both applied to the
close in order to highlight the results of the indicator.

You can find other candlestick pattern indicators in the "Exercises" chapter later in this manual.

Creating stop indicators to follow a position

It is possible to create STOP indicators, meaning potential places to exit the market defined by
personalized parameters.

With the backtesting module ProBacktest, which is the subject of another programming manual, you
can also define the stop levels of a backtest. However, programming a stop as an indicator is
interesting because:

It allows to visualize the stop as a line which updates in real-time on the chart (ex: trailing stop)

It is possible to place real-time alerts to be immediately informed of the situation

It is not necessary to create long or short orders (contrary to ProBacktest)

Programming Stops is also a means to master the commands you saw in the previous chapters.

These are the 4 categories of stop we will focus on:

StaticTake Profit STOP

Static STOP Loss

Inactivity STOP

Trailing STOP (trailing stop loss or trailing take profit)

The indicators presented in the following examples are possible codes to create stop indicators. You
will most probably personalize them using the instructions you learned in the previous chapters.

www.prorealtime.com 29 / 43

Chapter I I I : Pract ica l aspect s

StaticTake Profit STOP

A Static Take-Profit designates a level that if price reaches it, we plan to close our position and exit
with gains. By definition, this STOP is a fixed level (horizontal line). The user of this kind of STOP
will exit his position and take his profit when this level is reached.

The indicator coded below indicates two levels and “StartingTime” is the moment you entered your position:

If you are a buyer, you will take into account the higher curve, representing a 10% profit
(110% of the price when you took your long position).

If you are a seller, you will take into account the lower curve, representing a10% profit (90%
of the price when you took your short position).

// We define in the variable option:
// StartingTime = 100000 (this is an example for 10 am; set this to the time you
entered your position)
// Price= Price when you took your position
// You can look at StopLONG if looking at a long position and StopShort if you
are looking at a short position. You can also remove StopLONG or StopSHORT if you
only work with long positions or only work with short positions.
// AmplitudeUp represents the variation rate of Price used to draw the Take
Profit for long position (default: 1.1)
// AmplitudeDown represents the variation rate of Price used to draw the Take
Profit for short position (default: 0.9)
IF Time = StartingTime THEN
 StopLONG = AmplitudeUp * Price
 StopSHORT = AmplitudeDown * Price
ENDIF
RETURN StopLONG COLOURED(0, 0, 0) AS "TakeProfit LONG 10%", StopSHORT COLOURED(0,
255, 0) AS "TakeProfit SHORT 10%"

Static STOP loss

A Static STOP Loss is the contrary of a Static Take-Profit STOP, meaning if price reaches it, we plan to
close our position and exit with losses. This STOP is very useful when you are losing money and try exit
the market to limit your losses to the minimum. Just like the Static Take-Profit, this STOP defines a fixed
level, but this time, the user will exit his position and cut his losses when this level is reached.

The indicator coded below indicates two levels and “StartingTime” is the moment you entered your position:

If you are a buyer, you will take into account the lower curve, representing a 10% loss (90%
of the price when you took your long position).

If you are a seller, you will take into account the higher curve, representing a 10% loss (110%
of the price when you took your short position).

The code of this indicator is:

// We define in the variable option:
// StartingTime = 100000 (this is an example for 10 am; set this to the time you
entered your position)
// Price= Price when you took your position
// You can look at StopLONG if looking at a long position and StopShort if you
are looking at a short position. You can also remove StopLONG or StopSHORT if you
only work with long positions or only work with short positions.
// AmplitudeUp represents the variation rate of Price used to draw the Stop Loss
for short position (default: 0.9)
// AmplitudeDown represents the variation rate of Price used to draw the Tsop
Loss for long position (default: 1.1)
IF Time = StartingTime THEN
 StopLONG = AmplitudeUp * Price
 StopSHORT = AmplitudeDown * Price
ENDIF
RETURN StopLONG COLOURED(0, 0, 0) AS "StopLoss LONG 10%", StopSHORT COLOURED(0,
255, 0) AS "StopLoss SHORT 10%"

www.prorealtime.com 30 / 43

Chapter I I I : Pract ica l aspect s

Inactivity STOP

An inactivity STOP closes the position when the gains have not obtained a certain objective
(defined in % or in points) over a certain period (defined in number of bars).

Remember to define the variables in the "Variables" section.

Example of Inactivity Stop on Intraday Charts:

This stop must be used with those two indicators:

The first indicator juxtaposed to the curve of the price

The second indicator must be displayed in a separated chart

Indicator1

// We define in the variable option:
// MyVolatility = 0.01 represents variation rate between the each part of the
range and the close
IF IntradayBarIndex = 0 THEN
 ShortTarget = (1 - MyVolatility) * Close
 LongTarget = (1 + MyVolatility) * Close
ENDIF
RETURN ShortTarget AS "ShortTarget", LongTarget AS "LongTarget"

Indicator2

// We define in the variable option:
REM We supposed that you take an "On Market Price" position
// MyVolatility = 0.01 represents variation rate between the each part of the range
and the close
// NumberOfBars=20 : the close can fluctuate within the range defined during a
maximum of NumberOfBars before the position is cut (Result = 1)
Result = 0
Cpt = 0
IF IntradayBarIndex = 0 THEN
 ShortTarget = (1 - MyVolatility) * Close
 LongTarget = (1 + MyVolatility) * Close
ENDIF
FOR i = IntradayBarIndex DOWNTO 1 DO
 IF Close[i] >= ShortTarget AND Close[i] <= LongTarget THEN
 Cpt = Cpt + 1
 ELSE
 Cpt = 0
 ENDIF
 IF Cpt = NumberOfBars THEN
 Result = 1
 ENDIF
NEXT
RETURN Result

www.prorealtime.com 31 / 43

Chapter I I I : Pract ica l aspect s

Trailing Stop

A trailing STOP follows the evolution of the price dynamically and indicates when to close a
position.

We suggest you two ways to code the trailing STOP, the first one representing a Dynamic Trailing
Stop Loss, and the other one a Dynamic Trailing Take Profit.

Dynamic Trailing STOP LOSS (to be used in intraday trading)

// Define the following variables in the variable section:
// StartingTime = 090000 (this is an example for 9 am; set this to the time you
entered your position)
REM We supposed that you take an "On Market Price" position
// Amplitude represents the variation rate of the "Cut" curve compared to the
"Lowest" curves (for example, we can take Amplitude = 0.95)
IF Time = StartingTime THEN
 IF lowest[5](Close) < 1.2 * Low THEN
 IF lowest[5](Close) >= Close THEN
 Cut = Amplitude * lowest[5](Close)
 ELSE
 Cut = Amplitude * lowest[20](Close)
 ENDIF
 ELSE
 Cut = Amplitude * lowest[20](Close)
 ENDIF
ENDIF
RETURN Cut AS "Trailing Stop Loss"

Dynamic Trailing STOP Profit (to be used in intraday trading)

// Define the following variables in the variable section:
// StartingTime = 090000 (this is an example for 9 am; set this to the time you
entered your position)
REM You take an “On Market Price” position
// Amplitude represents the variation rate of the "Cut" curve compared to the
"Lowest" curves (for example, we can take Amplitude = 1.015)
IF Time = StartingTime THEN
 StartingPrice = Close
ENDIF
Price = StartingPrice - AverageTrueRange[10]
TrailingStop = Amplitude * highest[15](Price)
RETURN TrailingStop COLOURED (255, 0, 0) AS "Trailing take profit"

www.prorealtime.com 32 / 43

Chapter IV : Exercises

Chapter IV : Exercises

Candlesticks patterns

GAP UP or DOWN

The candlesticks can be either black or white

A gap is defined by these two conditions:

(the current low is strictly greater than the high of the previous bar) or (the current high is strictly
lesser than the low of the previous bar)

the absolute value of ((the current low – the high of the previous bar)/the high of the previous bar)
is strictly greater than amplitude) or ((the current high – the low of the previous bar)/the low of the
previous bar) is strictly greater than amplitude)

// Initialization of Amplitude
Amplitude = 0.001
// Initialization of detector
Detector = 0
// Gap Up
// 1st condition of the existence of a gap
IF Low > High[1] THEN
 // 2nd condition of the existence of a gap
 IF ABS((Low - High[1]) / High[1]) > Amplitude THEN
 // Behavior of the detector
 Detector = 1
 ENDIF
ENDIF
// Gap Down
// 1st condition of the existence of a gap
IF High < Low[1] THEN
 // 2nd condition of the existence of a gap
 IF ABS((High - Low[1]) / Low[1]) > Amplitude THEN
 // Behavior of the detector
 Detector = -1
 ENDIF
ENDIF
// Result display
RETURN Detector AS "Gap detection"

www.prorealtime.com 33 / 43

Chapter IV : Exercises

Doji (flexible version)

In this code, we define a doji to be a candlestick with a range (High – Close) is
greater than 5 times the absolute value of (Open – Close).

Doji = Range > ABS(Open - Close) * 5
RETURN Doji AS "Doji"

Doji (strict version)

We define the doji with a Close equal to its Open.

Doji = (Open = Close)
RETURN Doji AS "Doji"

Indicators

BODY MOMENTUM

The Body Momentum is mathematically defined by:

BodyMomentum = 100 * BodyUp / (BodyUp + BodyDown)

BodyUp is a counter of bars for which close is greater than open during a certain number of periods.

BodyDown is a counter of bars for which open is greater than close during a certain number of periods.

Periods = 14
b = Close - Open
IF BarIndex > Periods THEN
 Bup = 0
 Bdn = 0
 FOR i = 1 TO Periods
 IF b[i] > 0 THEN
 Bup = Bup + 1
 ELSIF b[i] < 0 THEN
 Bdn = Bdn + 1
 ENDIF
 NEXT
 BM = (Bup / (Bup + Bdn)) * 100
ELSE
 BM = Undefined
ENDIF
RETURN BM AS "Body Momentum"

www.prorealtime.com 34 / 43

Chapter IV : Exercises

ELLIOT WAVE OSCILLATOR

The Elliot wave oscillator shows the difference between two moving averages.

Parameters:

a: short MA periods (5 by default)

b: long MA periods (35 by default)

This oscillator permits to distinguish between wave 3 and wave 5 using Elliot wave theory.

The short MA shows short-term price action whereas the long MA shows the longer term trend.

When the prices form wave 3, the prices climb strongly which shows a high value of the Elliot Wave
Oscillator.

In wave 5, the prices climb more slowly, and the oscillator will show a lower value.

RETURN Average[5](MedianPrice) - Average[35](MedianPrice) AS "Elliot Wave Oscillator"

Williams %R

This is an indicator very similar to the Stochastic oscillator. To draw it, we define 2 curves:

1) The curve of the highest of high over 14 periods

2) The curve of the lowest of low over 14 periods

The %R curve is defined by this formula: (Close – Lowest Low) / (Highest High – Lowest Low) * 100

HighestH = highest[14](High)
LowestL = lowest[14](Low)
MyWilliams = (Close - LowestL) / (HighestH - LowestL) * 100
RETURN MyWilliams AS "Williams %R"

Bollinger Bands

The middle band is a simple 20-period moving average applied to close.

The upper band is the middle band plus 2 times the standard deviation over 20 periods applied to
close.

The lower band is the middle band minus 2 times the standard deviation over 20 periods applied to
close.

a = Average[20](Close)
// We define the standard deviation.
StdDeviation = STD[20](Close)
Bsup = a + 2 * StdDeviation
Binf = a - 2 * StdDeviation
RETURN a AS "Average", Bsup AS "Bollinger Up", Binf AS "Bollinger Down"

www.prorealtime.com 35 / 43

Glossar y

Glossary

A

Code Syntax Function

ABS ABS(a) Mathematical function "Absolute Value" of a

AccumDistr AccumDistr(close) Classical Accumulation/Distribution indicator

ADX ADX[N] Indicator Average Directional Index or "ADX" of
n periods

ADXR ADXR[N] Indicator Average Directional Index Rate or
"ADXR" of n periods

AND a AND b Logical AND Operator

AroonDown AroonDown[N] Aroon Down indicator of n periods

AroonUp AroonUp[N] Aroon Up indicator of n periods

ATAN ATAN(a) Mathematical function "Arctangent" of a

AS RETURN Result AS
"ResultName"

Instruction used to name a line or indicator
displayed on chart. Used with "RETURN"

Average Average[N](price) Simple Moving Average of n periods

AverageTrueRange AverageTrueRange[N](price) "Average True Range" - True Range smoothed
with the Wilder method

B

Code Syntax Function

BarIndex BarIndex Number of bars since the beginning of data
loaded (in a chart in the case of a ProBuilder
indicator or for a trading system in the case of
ProBacktestProBacktest or ProInvest)

BollingerBandWidth BollingerBandWidth[N](price) Bollinger Bandwidth indicator

BollingerDown BollingerDown[N](price) Lower Bollinger band

BollingerUp BollingerUp[N](price) Upper Bollinger band

BREAK (FOR...DO...BREAK...NEXT)
or
(WHILE...DO...BREAK...WEND)

Instruction forcing the exit of FOR loop or
WHILE loop

www.prorealtime.com 36 / 43

Glossar y

C

Code Syntax Function

CALL myResult = CALL myFunction Calls a user indicator to be used in the program
you are coding

CCI CCI[N](price) or CCI[N] Commodity Channel Index indicator

ChaikinOsc ChaikinOsc[Ch1, Ch2](price) Chaikin oscillator

Chandle Chandle[N](price) Chande Momentum Oscillator

ChandeKrollStopUp ChandeKrollStopUp[Pp, Qq, X] Chande and Kroll Protection Stop on long
positions

ChandeKrollStopDown ChandeKrollStopDown[Pp,
Qq, X]

Chande and Kroll Protection Stop on short
positions

Close Close[N] Closing price of the current bar or of the n-th
last bar

COLOURED RETURN Result
COLOURED(R,G,B)

Colors a curve with the color you defined using
the RGB convention

COS COS(a) Cosine Function

CROSSES OVER a CROSSES OVER b Boolean Operator checking whether a curve has
crossed over another one

CROSSES UNDER a CROSSES UNDER b Boolean Operator checking whether a curve has
crossed under another one

cumsum cumsum(price) Sums a certain price on the whole data loaded

CurrentDayOfWeek CurrentDayOfWeek Represents the current day of the week

CurrentHour CurrentHour Represents the current hour

CurrentMinute CurrentMinute Represents the current minute

CurrentMonth CurrentMonth Represents the current month

CurrentSecond CurrentSecond Represents the current second

CurrentTime CurrentTime Represents the current time (HHMMSS)

CurrentYear CurrentYear Represents the current year

CustomClose CustomClose[N] Constant which is customizable in the settings
window of the chart (default: Close)

Cycle Cycle(price) Cycle Indicator

www.prorealtime.com 37 / 43

Glossar y

D

Code Syntax Function

Date Date[N] Reports the date of each bar loaded on the
chart

Day Day[N] Reports the day of each bar loaded in the chart

Days Days[N] Counter of days since 1900

DayOfWeek DayOfWeek[N] Day of the week of each bar

DClose DClose(N) Close of the n-th day before the current one

DEMA DEMA[N](price) Double Exponential Moving Average

DHigh DHigh(N) High of the n-th bar before the current bar

DI DI[N](price) Represents DI+ minus DI-

DIminus DIminus[N](price) Represents the DI- indicator

DIplus DIplus[N](price) Represents the DI+ indicator

DLow DLow(N) Low of the n-th day before the current one

DO See FOR and WHILE Optional instruction in FOR loop and WHILE
loop to define the loop action

DOpen DOpen(N) Open of the n-th day before the current one

DOWNTO See FOR Instruction used in FOR loop to process the loop
with a descending order

DPO DPO[N](price) Detrented Price Oscillator

E

Code Syntax Function

EaseOfMovement EaseOfMovement[I] Ease of Movement indicator

ELSE See IF/THEN/ELSE/ENDIF Instruction used to call the second condition of
If-conditional statements

ELSEIF See
IF/THEN/ELSIF/ELSE/ENDIF

Stands for Else If (to be used inside of
conditional loop)

EMV EMV[N] Ease of Movement Value indicator

ENDIF See IF/THEN/ELSE/ENDIF Ending Instruction of IF-conditional statement

EndPointAverage EndPointAverage[N](price) End Point Moving Average of a

EXP EXP(a) Mathematical Function "Exponential"

ExponentialAverage ExponentialAverage[N](price) Exponential Moving Average

www.prorealtime.com 38 / 43

Glossar y

F - G

Code Syntax Function

FOR/TO/NEXT FOR i=a TO b DO a NEXT FOR loop (processes all the values with an
ascending (TO) or a descending order
(DOWNTO))

ForceIndex ForceIndex(price) Force Index indicator (determines who controls
the market (buyer or seller)

H

Code Syntax Function

High High[N] High of the current bar or of the n-th last bar

highest highest[N](price) Highest price over a number of bars to be
defined

HistoricVolatility HistoricVolatility[N](price) Historic Volatility (or statistic volatility)

Hour Hour[N] Represents the hour of each bar loaded in the
chart

I - J - K

Code Syntax Function

IF/THEN/ENDIF IF a THEN b ENDIF Group of conditional instructions without second
instruction

IF/THEN/ELSE/ENDIF IF a THEN b ELSE c ENDIF Group of conditional instructions

IntradayBarIndex IntradayBarIndex[N] Counts how many bars are displayed in one day
on the whole data loaded

L

Code Syntax Function

LinearRegression LinearRegression[N](price) Linear Regression inidcator

LinearRegressionSlope LinearRegressionSlope[N]
(price)

Slope of the Linear Regression inidcator

LOG LOG(a) Mathematical Function "Neperian logarithm" of a

Low Low[N] Low of the current bar or of the n-th last bar

lowest lowest[N](price) Lowest price over a number of bars to be
defined

www.prorealtime.com 39 / 43

Glossar y

M

Code Syntax Function

MACD MACD[S,L,Si](price) Moving Average Convergence Divergence
(MACD) in histogram

MACDline MACDLine[S,L](price) MACD line indicator

MassIndex MassIndex[N] Mass Index Indicator applied over N bars

MAX MAX(a,b) Mathematical Function "Maximum"

MedianPrice MedianPrice Average of the high and the low

MIN MIN(a,b) Mathematical Function "Minimum"

Minute Minute Represents the minute of each bar loaded in the
chart

MOD a MOD b Mathematical Function "remainder of the
division"

Momentum Momentum[I] Momentum indicator (close – close of the n-th
last bar)

MoneyFlow MoneyFlow[N](price) MoneyFlow indicator (result between -1 and 1)

MoneyFlowIndex MoneyFlowIndex[N] MoneyFlow Index indicator

Month Month[N] Represents the month of each bar loaded in the
chart

N

Code Syntax Function

NEXT See FOR/TO/NEXT Ending Instruction of FOR loop

NOT Not A Logical Operator NOT

O

Code Syntax Function

OBV OBV(price) On-Balance-Volume indicator

ONCE ONCE VariableName =
VariableValue

Introduces a definition statement which will be
processed only once

Open Open[N] Open of the current bar or of the n-th last bar

OR a OR b Logical Operator OR

P - Q

Code Syntax Function

PriceOscillator PriceOscillator[S,L](price) Percentage Price oscillator

PositiveVolumeIndex PriceVolumeIndex(price) Positive Volume Index indicator

PVT PVT(price) Price Volume Trend indicator

www.prorealtime.com 40 / 43

Glossar y

R

Code Syntax Function

R2 R2[N](price) R-Squared indicator (error rate of the linear
regression on price)

Range Range[N] calculates the Range (High minus Low)

REM REM comment Introduces a remark (not taken into account by
the code)

Repulse Repulse[N](price) Repulse indicator (measure the buyers and
sellers force for each candlestick)

RETURN RETURN Result Instruction returning the result

ROC ROC[N](price) Price Rate of Change indicator

RSI RSI[N](price) Relative Strength Index indicator

ROUND ROUND(a) Mathematical Function "Round a to the nearest
whole number"

S

Code Syntax Function

SAR SAR[At,St,Lim] Parabolic SAR indicator

SARatdmf SARatdmf[At,St,Lim](price) Smoothed Parabolic SAR indicator

SIN SIN(a) Mathematical Function "Sine"

SGN SGN(a) Mathematical Function "Sign of" a (it is positive
or negative)

SMI SMI[N,SS,DS](price) Stochastic Momentum Index indicator

SmoothedStochastic SmoothedStochastic[N,K]
(price)

Smoothed Stochastic

SQUARE SQUARE(a) Mathematical Function "a Squared"

SQRT SQRT(a) Mathematical Function "Squared Root" of a

STD STD[N](price) Statistical Function "Standard Deviation"

STE STE[N](price) Statistical Function "Standard Error"

Stochastic Stochastic[N,K](price) %K Line of the Stochastic indicator

summation summation[N](price) Sums a certain price over the N last
candlesticks

Supertrend Supertrend[STF,N] Super Trend indicator

www.prorealtime.com 41 / 43

Glossar y

T

Code Syntax Function

TAN TAN(a) Mathematical Function "Tangent" of a

TEMA TEMA[N](price) Triple Exponential Moving Average

THEN See IF/THEN/ELSE/ENDIF Instruction following the first condition of "IF"

Time Time[N] Represents the time of each bar loaded in the
chart

TimeSeriesAverage TimeSeriesAverage[N](price) Temporal series moving average

TO See FOR/TO/NEXT Directional Instruction in the "FOR" loop

Today Today[N] Date of the bar n-periods before the current bar

TotalPrice TotalPrice[N] (Close + Open + High + Low) / 4

TR TR(price) True Range indicator

TriangularAverage TriangularAverage[N](price) Triangular Moving Average

TRIX TRIX[N](price) Triple Smoothed Exponential Moving Average

TypicalPrice TypicalPrice[N] Represents the Typical Price (Average of the
High, Low and Close)

U

Code Syntax Function

Undefined a = Undefined Sets a the value of a variable to undefined

V

Code Syntax Function

Variation Variation(price) Difference between the close of the last bar and
the close of the current bar in %

Volatility Volatility[S, L] Chaikin volatility

Volume Volume[N] Volume indicator

VolumeOscillator VolumeOscillator[S,L] Volume Oscillator

VolumeROC VolumeROC[N] Volume of the Price Rate Of Change

www.prorealtime.com 42 / 43

Glossar y

W

Code Syntax Function

WeightedAverage WeightedAverage[N](price) Represents the Weighted Moving Average

WeightedClose WeightedClose[N] Average of (2 * Close), (1 * High) and (1 * Low)

WEND See WHILE/DO/WEND Ending Instruction of WHILE loop

WHILE/DO/WEND WHILE (condition) DO (action)
WEND

WHILE loop

WilderAverage WilderAverage[N](price) Represents Wilder Moving Average

Williams Williams[N](close) %R de Williams indicator

WilliamsAccumDistr WilliamsAccumDistr(price) Accumulation/Distribution of Williams Indicator

X

Code Syntax Function

XOR a XOR b Logical Operator eXclusive OR

Y

Code Syntax Function

Year Year[N] Year of the bar n periods before the current bar

Yesterday Yesterday[N] Date of the day preceeding the bar n periods
before the current bar

Z

Code Syntax Function

ZigZag ZigZag[Zr](price) Represents the Zig-Zag indicator introduced in
the Eliott waves theory

ZigZagPoint ZigZagPoint[Zp](price) Represents the Zig-Zag indicator in the Eliott
waves theory calculated on Zp points

Other

Code Function Code Function

+ Addition Operator < Strict Inferiority Operator

- Substraction Operator > Strict Superiority Operator

* Multiplication Operator <= Inferiority Operator

/ Division Operator >= Superiority Operator

= Equality Operator // Introduces a commentary line

<> Difference Operator

www.prorealtime.com 43 / 43

www.prorealtime.com

http://www.prorealtime.com/

