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Abstract

This paper describes an autonomous stock trading agent designed based on the classical
reinforcement learning algorithm Sarsa λ [1]. The Sarsa based agent, named Sarsa-trader,
is compared with an agent with a successful hand coded strategy known as the Reverse 
Strategy [4] using a simulated stock market. Experimental results on the simulated stock 
market show that Sarsa-trader outperforms the hand coded agent under several different 
market conditions.

1 Introduction

Stocks worth billions of dollars are traded on electronic stock markets every day. A large 
portion of such trades are executed by day traders. Day trading is the practice of buying 
and selling financial instruments within the same trading day such that all positions are 
closed before the market close of the trading day. Day Traders provide liquidity in the 
market by acting as intermediaries between investors who want to buy stocks and others
who want to sell stocks. Investors generally buy or sell stocks by estimating the inherent 
value of the stocks while day traders follow short term price movements of the stocks to 
make trading decisions. With the advent of internet commerce, the design of agents that 
can be deployed in realistic electronic markets has become crucial to many financial 
institutions for successfully participating in electronic trading.

A survey of foreign exchange traders in London estimates that up to 90% of them use 
some form of trading rules in daily practice. The huge volume and complexity of the 
electronic markets makes it imperative that these trading rules are learned automatically 
based on trading experience. Many successful agents in the financial trading domain are 
based on the use of machine learning techniques [2] [3] [4] [5]. Reinforcement learning,
being a sub-area of machine learning which focuses on how an agent should to take 
actions in an environment so as to maximize some notion of long-term reward is very 
well suited for learning trading rules by interacting with an electronic market. This paper 
describes the design and implementation of an autonomous trading agent based on a 
classical reinforcement learning algorithm Sarsa λ [1] with replacing eligibility traces [6]. 
The reinforcement learning based agent, named Sarsa-trader is compared with an agent 
with a successful hand coded strategy known as the Reverse strategy [3] or the Trading 
Against Trend strategy using a simulated stock market. Experimental results on a



simulated stock market show that Sarsa-trader outperforms the hand coded agent under 
several different market conditions.

The rest of the paper is organized as follows, Section 2 describes the implementation of 
the stock market simulation used for the experimental evaluation. Section 3 provides the 
design and implementation details of the Sarsa based autonomous stock trading agent. 
Section 4 presents the hand coded agent with the Reverse strategy. Section 5 analyses the 
experimental results by comparing the performance of the Sarsa-trader with the hand 
coded agent and Section 6 concludes the paper with discussion on strengths and 
limitations of the Sarsa-trader and directions for future work.

2 Stock Market Simulation

The stock market consists of only one stock, the price of which is varied at each trading 
round in a random manner depending on the market condition. The stock price is 
simulated using a random number generator and a base stock price. At any given time the 
price of the stock is generated by adding the base price of the stock with random 
fluctuation generated by the random number generator.

The stock market can simulate three basic market conditions a steady price figure 1, a 
rising price figure 2 and a falling price figure 3.  These three basic market conditions can 
be combined in arbitrary order to generate a wide range of market conditions. Figure 4 
shows such a combined market condition in which the price of the stock is increased with 
fluctuations for the first half of the trading day using the basic rising price generator and 
the stock price is decreased with fluctuations for the rest of the trading day using the 
basic falling price generator.
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Figure 1: A steady price market condition with stock price fluctuating over its 
base price

The steady price is generated using the following rule to ensure that the fluctuations are
not very large but at the same time remained random.

Current Price = Base Price + Random Number * .001 * Base Price
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Figure 2:  A rising price market condition with stock price rising during the day

A rising price is generated as follows to ensure that the price doesn’t grow exponentially 
during any trading day but at the same time remained random.
a = Random Number;
if (a < .01) {

Base Price = Base Price + a * .001 * Base Price;
}
return Base Price + a * .001 * Base Price;
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Figure 3:  A falling price market condition with stock price falling during the day

The falling price can be generated similarly by ensuring that the price is decreased 
fractionally at random intervals. The price of the stock is independent of the trading 
behavior of the agents participating in the markets and is completely determined by the 
combination of market conditions used during any given trading day. This separation of 
stock price from the trading activity of the agents enabled the Sarsa agent to focus 
entirely on making the optimal trading decision without having to model the behavior of 
other agents and the effect of their behavior on the stock price. This model is also a close 
approximation of the environment in which small volume traders operate on a real 
electronic market where their actions have almost no direct effect on the price of the 
stock.
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Figure 4:  A mixed price market condition with stock price rising in the first half
of the day and falling during the rest of the day

3 The Sarsa λ based Agent

The Sarsa [1] algorithm is an On-Policy algorithm for TD-Learning. The major 
difference between it and Q-Learning [7] is that the maximum reward for the next state is 
not necessarily used for updating the Q-values. Instead, a new action, and therefore 
reward, is selected using the same policy that determined the original action. The name 
Sarsa actually comes from the fact that the updates are done using the quintuple Q(s, a, r, 
s', a'). Where: s, a are the original state and action, r is the reward observed in the 
following state and s', a' are the new state-action pair.

The Stock trading agent uses Sarsa algorithm because it incorporates the cost of 
exploration into the estimated Q values and therefore learns the best possible policy given 
the current rate of exploration while Q-Learning would learn the optimal policy when 
there is no exploration but may not find the policy that would provide maximum reward 
given the current rate of exploration. The autonomous stock trading agent operates in 
non-stationary environment and it is necessary to continue to explore and learn 
throughout its operation and Sarsa algorithm ensures that agents learns the policy that 
would give maximum reward possible with the current rate of exploration.

3.1 The Agent Specification

In its basic form, a reinforcement learning problem is given by a 4-tuple {S,A,T,R}, where 
S is a finite set of the environment’s states; A is a finite set of actions available to the 
agent as a means of extracting an economic benefit from the environment, referred to as 
reward, and possibly of altering the environment state; T : S × A → S is a state transition 
function; and R : S × A → R is a reward function. The state transition and reward 
functions T and R are possibly stochastic and unknown to the agent. The objective is to 
develop a policy, i.e., a mapping from environment states to actions, which maximizes 
the long-term return. A common definition of return, and one used in this agent, is the 
discounted sum of rewards: ∑∞

t=0 γtrt where 0 < γ < 1 is a discount factor and rt is the 
reward received at time t.

State space. The state of the environment is observed by the stock trading agent through 
the price of the stock. The deviation of the current price from the estimated real value of 



the stock determines if the current price is a good price for buying the stock or a good 
price for selling the stock and therefore the state value relevant to the current problem is 
percentage deviation of the current price from the estimated real value of the stock. This 
measure is independent of the absolute value of the stock but at the same time reflect the 
value relevant to the agent’s trading decision. Such a price deviation measure is
continuous and in order to allow for generalization to unseen instances of continuous 
state space the state space is divided into several hundred linear tiles. The agent uses 
states 0 - 99 for negative deviations, 100 for no deviation and 101-200 for representing 
positive deviations from the estimated value. 

The estimated real value of the stock is its steady state value which is calculated by using 
linear regression on the history of its price. Figure 5 shows one price estimation which 
uses last 10 prices of the stock and another estimation which uses last 100 prices of the 
stock. Although the former gives closer approximation to the actual price movement of 
the stock the latter predicts the long term stable price of the price more accurately and is
used by the agent for approximating the current state of the enviornment.
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Figure 5: The stock price computed using last 10 trade prices is shown in pink while 
the green graph shows the stock price computed by using the last 100 trade prices.

The state space is limited to the price parameter because it is the only value which 
relevant to the trading action. The ratio of the cash and stock holding does not determine 
the expected return from the trade or affected the trade decision and hence was omitted. 
The unwinding option also does not affect the trading decision as the price of the stock is 
independent of the volume of the stock traded and therefore unwinding is achieved by not 
making any new purchases in the last session of the day. If the stock price was affected 
by the volume of the stock traded then unwinding would have to be completed at
measured speed and it would be necessary to keep track of the time of the day as another 
state parameter.

Action space. The possible actions the stock trading agent can take at any state are sell 
stocks, buy stocks or hold positions and execute no trade. The stock market is designed 
such that the agent can sell or buy any amount of stocks at the current price generated by 
the stock market simulation and therefore the price of the stock sold or bought buy the 
agent is defined by the stock market simulator. When the agent was given an option to 
sell or buy varying amounts of its stock the action space became very large and the agent 
couldn’t converge to any good policy even after several million trades and therefore the 



Sarsa-trader trades stocks worth a fixed amount money at each transaction when it wants 
to buy or sell. Action values 0, 1, 2 are used for no trade, buy and sell actions 
respectively. The agent’s trade volume can be maximized by setting this value to a very 
large number. As we shall later the agent uses the state space to manage risk without 
relying on the quantity of the stocks traded.

Reward function. The goal of the trading agent is to maximize the profits it accumulates
during a trading day. To make this possible the agent was given a positive reward after 
each action equal to the percentage increase in the total asset of the agent after the action. 
The total asset at any time is the sum of cash and stock holdings where the stocks are 
valued at their estimated real values. This ensures that the agent receives a positive 
reward for buying the stocks at a price lower than their estimated price and also for 
selling them at a price higher than the estimated price of the stock.

Transition function. The transition from current state to the next state was determined 
by the change in the price of the stocks and therefore was modeled by the stock market 
simulator. After each action the agent would ask the simulator for the next price and use 
that as an observation to estimate the next state.

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
     e(s, a) = 0 for all s, a.
     Initialize s
    Choose a from s using policy derived from Q
    Repeat (for each step of episode):
        Take action a, observe reward r, s’
        Choose a’ from s’ using policy derived from Q
        δ =  r + γQ(s’, a’) − Q(s, a)
        e(s, a) =  1 (replacing traces)
       For all s, a:
          Q(s, a) =  Q(s, a) + αδ e(s, a)
           e(s, a)   =  γλe(s, a)
     s =  s’ ; a  = a’;
until s is terminal

Figure 6: Sarsa(λ) with replacing traces

Parameter values. The agent used Sarsa(λ) shown in figure 6 with replacing traces[6]. 
Replacing traces are used because due the fluctuating nature of the stock prices several 
states are visited very frequently before the end of the episode even though revisiting the 
states was not necessary for episode to end. Replacing traces ensured that repeated visits 
to the state don’t increase their eligibility above 1. After exploring different parameter 
values the following values γ = .9, λ = .9, α= .8 and ε = .01 were found to give best 
results for the agent.



3.2 Learning Curve

Figure 7 shows a typical learning curve for Sarsa-trader on a steady fluctuating price 
market condition when $1000 was set as unit of for each trade action and was trained for 
different durations. The trader started off with random actions and as it learned the 
optimal policy it improved the profit per trade very fast but after 200K trades the 
improvement in profit per trade became very slow and finally turned steady over 400K 
trades.
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Figure 7: Learning curve of Sarsa-trader

3.3 Learned Policy

Figure 8 shows a typical policy learned by Sarsa-trader after training it over 200K trades. 
The values 0, 1 and 2 stands for no trade, buy and sell actions. The state numbers 0-99 
represent a current price lower than estimated price, 100 represent a state in which the 
current price is equal to the estimated price and 101-200 represent states where current 
price is higher than the estimated price. The agent correctly learns to buy at lower price 
and sell at higher prices. 
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Figure 8: A typical policy learned by Sarsa-trader after 200K trades.

Careful inspection of the graph shows that there are lots of white spaces around state 
hundred and many thick black lines farther away from state 100 indicating that the agent 
learned that its safer and more profitable to buy at states further away from estimated 
price and to avoid trades at states close to the state 100 which represent the equilibrium



price. By choosing which states to trade the stock at, the agent can balance its risk and 
profitability. The states 0-50 and states 160-200 have a “no trade” action value because 
these states are very far from the equilibrium price of the stock and are rarely visited 
during the training period. This shows that the agent is flexible enough to learn the 
current fluctuations of the market and start trading in those states which are visited during 
its operations.

4 The Reverse Strategy

Two common hand coded trading strategies are Trend Following strategy and the 
Reverse Strategy. In the Trend Following strategy the trader buys stocks when the price 
is rising and sells when it is falling. The Reverse strategy does exactly the opposite: it 
sells when the price is rising and buys when it is falling. Although this strategy appears 
counter-intuitive, it works by exploiting the price micro-movements (small price spikes in 
both direction), which make up the evolution of the price of a stock during each trading
day.

Initial testing of the Trend Following strategy revealed that it lost more money than it 
made and therefore it was abandoned for the counter intuitive Reverse strategy which 
consistently made profits in all markets conditions used for the experiments. The Reverse 
strategy was implemented as follows. The trend of the price movement was monitored 
using the slope of the regression line of the last 100 trade prices and when the slope was 
positive the agent sold the fixed amount of shares and when the slope became negative 
the agent bought the same fixed amount of shares.  

5 Experimental Evaluation

The Sarsa-trader and the hand coded agent with Reverse strategy in a series of 
experiments under several different market conditions. In each experiment the Sarsa-
trader was first trained for 200K trading rounds and the performance of the trained agent 
was then compared against the hand coded agent during 20K trading rounds. Each result 
presented is an average over 10 runs of the same experiment. Each trader was given and 
cash asset of 10K at the beginning of the experiment and the graphs in figures 9, 10, 11 
and 12 shows the growth in total asset during the experiments.
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Figure 9: Performance of the agents in a steady price market condition



Figures 9, 10, 11 and 12 compares the performance of Sarsa-trader with the hand coded 
agent during steady price, rising price, falling price and mixed price market conditions. 
The graphs show that Sarsa-agent outperforms the hand coded agent in each of the 
market conditions with a significant margin. The graphs also indicate that profits earned 
by both the agents are steadily rising over the trading period without big fluctuations. 
This is partly because the price movements used the market stimulator are minor and 
doesn’t include any drastic rise or fall in prices. 

0

10000

20000

30000

40000

1 9 17 25 33 41 49 57 65 73 81 89 97

T
ot

al
A

ss
et

RL TradeAganistTrend

Figure 10: Performance of the agents in a rising price market condition
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Figure 11: Performance of the agents in a falling price market condition
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Figure 12: Performance of the agents in a mixed price market condition



Figure 13 compares the performance of the Sarsa-trader in different market conditions. 
The Sarsa-trader shows best performance in a rising market condition as price rise 
enables it to make profits even when some of the buy options are executed at less than 
optimal prices. Similarly a falling market condition makes its difficult to make profits as 
purchases made at lower prices should be sold immediately at higher prices before the 
price goes down. I posit that the Sarsa-trader performs worst in a mixed market because 
the linear regression based estimation used for predicting the prices has a maximum 
likelihood of failing a mixed market condition where the price rises for certain period and 
then falls for the remaining part of the day.
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Figure 13: Performance of the RL agent in various market conditions

The Sara-trader and Reverse strategy agents did not perform very well in few 
experimental market conditions with steep changes in the stock prices. This is one of the 
limitations of the linear regression price estimation tool used the by the agent which fails 
to anticipate any such changes. Unless such steep changes recur in a certain pattern it 
would be hard for any method of price prediction to accurately predict such a change. 

The agent also does not use any order book information to make price estimations. If 
order book information is available to the agent then it would be able to anticipate the 
price changes before it becomes visible in the market but once again the complex 
prediction problem would be predicting sharp changes in the order book entry due to 
influence from the outside economy. Predicting such sharp changes in the order book 
entries would then be a bottle neck for performance of the order book based agent. 

6 Conclusion and Future Work

This paper describes a Sarsa λ based autonomous stock-trading agent which outperforms 
hand coded agent under several simulated market conditions. Autonomous trading agents 
is an active research area with huge economic significance and also very well suited for 
applying reinforcement learning algorithms which enables the agents to learn polices for 
a stochastic and dynamic environment. The Sarsa-trader presented in this paper has a 
limited action space and further research needs to be done to incorporate more actions 
into the agent and at the same time converge to successful policies quickly.  Another area 
of improvement is to incorporate the order book information and live news releases for 
price prediction which would bridge the gap between the information available to human 
traders and the electronic counterparts.
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