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Abstract 
 

The arithmetic mean is a fundamental statistical concept. Unfortunately, social science students 

rarely develop an intuitive understanding of the mean and rely on the formula to describe or 

define it. According to constructivist pedagogy, educators that have access to a variety of 

conceptualizations of a particular concept are better equipped to teach that concept in a 

meaningful way. With this in mind, this article outlines five conceptualizations of the arithmetic 

mean and discusses how each conceptualization can be presented in the classroom. Educators 

can use these conceptualizations in order to foster insight into the mean.  

 

1.  Introduction 
 

Social science students are often apprehensive (Sciutto 1995) and anxious (e.g. Schacht and 

Stewart 1990; Zeidner 1991) towards statistics courses. Unfortunately, negative attitudes towards 

statistics are difficult to change and are directly related to academic performance (Garfield and 

Ben-Zvi 2007). Moreover, a poor understanding of basic statistical concepts persists after 

graduation (Groth and Bergner 2006) and negative attitudes are maintained in the workplace 

(Huntley, Schneider and Aronson 2000).  Considering that competence in quantitative methods is 

a requisite for many careers, it is of considerable importance that students possess a basic 

understanding of statistical concepts. Needless to say, there is a demand for teaching methods 

and strategies that aim to reduce trepidation and present statistics in a manner that is both 

meaningful and enjoyable to students. 
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Constructivist approaches to teaching statistics have exhibited promise in this regard. For 

example, active learning exercises (Bartsch 2006; Dolinksy 2001; Helman and Horswill 2003), 

relating course content to students’ background knowledge (Dillbeck 1983), and encouraging 

students to focus on concepts rather than computation (Hastings 1982) can improve attitudes and 

performance in introductory statistics courses. According to constructivist pedagogy, the role of 

educators is to provide opportunities for students to build upon their own understanding of a 

particular concept (von Glasersfeld 1989). The opportunities that educators can present to 

students are directly related to the variety of ways in which students might conceptualize a 

particular topic.  As a result, a task of educators is to: 

 

… construct a hypothetical model of the particular conceptual worlds of the students 

they are facing. One can hope to induce changes in their ways of thinking only if one has 

some inkling as to the domains of experience, the concepts, and the conceptual relations 

the student possess at the moment. (von Glasersfeld 1996, p.7)  

 

Thus, according to constructivist pedagogy, statistics educators should develop hypotheses about 

their students’ current level of understanding and anticipate areas of the subject material that 

might be difficult to comprehend. 

  

The arithmetic mean is a fundamental statistical concept and is considered to be a core topic in 

introductory statistics courses (Landrum 2005). However, an intuitive understanding of the mean 

often escapes students (e.g. Russell and Mokros 1996; Watson 2006). For example, students are 

capable of defining the mean algorithmically, but they are unable to provide any conceptual 

insight (i.e. it is the value that minimizes the sum of squared deviations; the value of the mean 

might not be a member of the data set) (Matthews and Clarke 2007). Like other fundamental 

statistical concepts (e.g. the general linear model, see Chartier and Faulkner 2008), the mean can 

be conceptualized in a variety of ways. Consequently, it would be beneficial for students if 

statistics educators: (a) have at their disposal a variety of possible conceptualizations of the 

mean; and (b) develop hypotheses regarding how a student might conceptualize the mean. This 

would aid educators in developing an eclectic range of opportunities to present to students so that 

students can construct their own understanding of the mean rather than parrot the formula. The 

purpose of this article is to outline five conceptualizations of the mean and discuss how each 

conceptualization can be presented in the classroom. 

 

As a preliminary, it should be noted that the conceptualizations are presented in order of 

mathematical profundity. This ordering scheme follows what we consider to be an appropriate 

progression of insight into the mean for a social science student. Initially, the mean is 

conceptualized somewhat informally, relying less on a mathematical description and more on a 

figurative description. As the student progresses to more advanced courses in statistics, the mean 

is conceptualized in more formal, mathematical terms. For each conceptualization, we discuss 

the appropriate audience (e.g. introductory course, upper-year, or graduate level) and the 

recommended mathematics knowledge that would facilitate understanding.  
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2.  The Socialist Conceptualization  
 

The socialist conceptualization is intended for students in an introductory statistics course in the 

social sciences. It requires an understanding of the basic arithmetic operators, with which social 

science students are generally comfortable. This conceptualization also makes use of 

anthropomorphism; human qualities are assigned to the mean in order to foster meaning.  

The mean can be described as a ―socialist‖ measure of central tendency, that is - the mean is the 

value that each participant receives if the sum is divided equally among all members of the group 

(Gravetter and Wallnau 2002). Students are well aware that the formula for the mean involves 

summing the scores in the distribution and dividing the sum by the number of scores in the 

distribution: 



x 

x i

i1

n



n
. (1) 

 

However, they often wonder why summing the scores and dividing the sum by n produces a 

meaningful measure of central tendency. The socialist conceptualization provides an answer: 

dividing the sum by n is equivalent to determining how the sum can be equally proportioned to 

all of the scores in the distribution. From this point of view, the mean is an intuitively appealing 

measure of central tendency because it is the single value that is common to all scores.  

The etymology of mean and sum illustrates this point well. Sum originates from the Latin noun 

summa, which refers to the whole or the total of the parts (Partridge 1977). Thus, the sum of a 

distribution represents its whole. Dividing the sum by n is equivalent to partitioning the whole of 

the distribution equally to all of the scores. It is not surprising, then, to find that the etymology of 

mean contains a ―shared by all‖ connotation (Onions 1966).  

 

3.  The Fulcrum Conceptualization  
 

The second conceptualization of the mean makes use of an engineering analogy and is also 

geared towards an introductory level statistics course. The mean can be described as the fulcrum 

that is unique to each distribution (Weinberg and Schumaker 1962). As Figure 1 illustrates, if the 

scores in a distribution are represented on a number line, then the value of the mean is the 

location on the number line where the sum of negative deviations from that location is equal to 

the sum of positive deviations from that location. Thus, the mean is equivalent to the balancing 

point of deviations in a distribution.   
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Figure 1. The mean conceptualized as a fulcrum. The distribution {1,1,1,3,3,6,7,10} is represented on a 

number line. Each grey box represents the existence of a score in the distribution.  The number inside 

each box represents the deviation from the mean. The sum of negative deviations from the mean is equal 

to the sum of positive deviations from the mean. Thus, the mean acts as a balancing point in the 

distribution. 

 

Presenting the mean as a fulcrum allows students to visualize the location of the mean relative to 

all of the scores in the distribution. Consequently, several interesting properties of the mean can 

be discovered that might otherwise go unnoticed. For example, the fact that the sum of 

deviations from the mean will always be equal to zero is explicitly presented in the fulcrum 

conceptualization. Additionally, students may notice that the value of the mean is restricted to 

the range of scores in the distribution. Hence, they could realize that it is impossible for the value 

of the mean to be greater than the maximum score or less than the minimum score. Finally, 

students could discover that the location of the mean is not necessarily the middle of the 

distribution, which would be useful for helping to distinguish between the mean and the median.  

 

4.  Presenting the Socialist and Fulcrum Conceptualizations in the Classroom 
 

Taken together, the socialist and fulcrum conceptualizations capture several aspects of the 

meaning of the mean. The socialist conceptualization explicitly addresses the rationale behind 

the formula, whereas the fulcrum conceptualization addresses some of the consequences of using 

the mean as a representative value of the distribution (i.e. the sum of deviations from mean are 

equal to zero). Furthermore, the socialist and fulcrum conceptualizations require minimal 

recourse to mathematics, and as a result, are likely to appeal to students in introductory statistics 

courses that suffer from mathematics anxiety.  

 

Appendix A describes a sample activity that could be used to introduce the socialist and fulcrum 

conceptualizations in the classroom. Classroom discussions are well suited for fostering insight 

into statistical concepts (Garfield and Everson 2009). Consequently, the activity is in the form of 

a class discussion that centers on a grade comparison problem. Throughout the discussion 

students are encouraged to offer tentative solutions to the problem. The educator is responsible 
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for precluding certain solutions and encouraging others. Ultimately, the aim of the discussion is 

to guide students to arrive at the socialist and fulcrum conceptualizations on their own. 

Suggestions for doing so are in Appendix A.  

 

5.  The Algebraic form of the Least Squares Conceptualization 
 

The least squares criterion can be used to present the mean as a measure of central tendency. The 

algebraic and geometric forms of the least squares criterion are appropriate for students in upper-

year statistics courses who have experience with mean deviations or with the fulcrum 

conceptualization. The algebraic form is particularly useful for providing a formal criterion as to 

why the mean is used as a measure of central tendency. If educators decide to present the proof 

of the least squares criterion, they should be aware that students are expected to know how to 

expand and differentiate a single variable quadratic polynomial and how to analyze a quadratic 

function in Cartesian space. 

 

Formally, the goal of least squares is to find the value of c that minimizes the quadratic function 

SS(c): 



SS (c)  (xi  c)2

i1

n

 . (2) 

 

Legendre, who was the first to present the criterion (Stigler 1986), noted that it could be used to 

determine a measure of central tendency: 

 

 We see, therefore, that the method of least squares reveals, in a manner of    

 speaking, the center around which the results of observations arrange themselves,   

 so that the deviations from that center are as small as possible. (Legendre 1805,   

 p.75, as cited in Stigler 1986, p.14) 

 

A suitable measure of central tendency should produce a value that is representative of the 

distribution. Legendre’s insight suggests that representative can be formally defined as the value 

that minimizes the sum of squared deviations. Not surprisingly, the mean is the value that 

satisfies the least squares criterion.   

 

Returning to Equation 2, the proof that the mean is the value of c that minimizes SS(c) can be 

presented to students using a combination of algebra, calculus, and geometry. If SS(c) is 

expanded and rearranged, then SS(c) is equal to 






n

i

i

n

i

i XXcnc

1

2

1

2 2 .  (3) 

 

Note that Equation 3 has the general form of the quadratic formula, 

 

CBxAxc  2)(SS , where . ,
1

2 , 
1

2 , cx
n

i
iXC

n

i
iXBnA 





  (4) 



Journal of Statistics Education, Volume 19, Number 2 (2011) 

 6 

As Figure 2 illustrates, a quadratic function takes the form of a parabola when graphed in 

Cartesian space. A parabola will open upward if the A coefficient of the quadratic function is 

positive. The vertex of a parabola that opens upward is located where the quadratic function 

reaches its minimum value. In the case of SS(c), the location of the vertex is the value that 

minimizes the sum of squared deviations.  If the quadratic function is expressed in the general 

form, as demonstrated in Equation 4, then the coordinate of the vertex can be found by 

calculating the derivative of the function at equilibrium (i.e. where the slope of the parabola 

equals zero) and solving for x: 



d(SS (c))

dx
 2Ax  B  0

 x 
B

2A

. (5) 

 

 
 
Figure 2. A graph of the quadratic function y = Ax

2
+Bx+C. The function is expressed in the general form 

of the quadratic formula. The A coefficient of the function is positive, which results in a parabola that 

opens upward. The vertex of the parabola is located where the derivative of the function is at equilibrium.  

 

Substituting the values of A, B, and x from Equation 4 into Equation 5, the value of c that 

minimizes the function SS(c) is then 

x
n

X

n

i

i



 


2

)2(

1
.  (6) 
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Simplifying Equation 6 reveals that the mean (Equation 1) minimizes the sum of squared 

deviations. Thus, the mean is the unique value in a distribution that satisfies the least squares 

criterion.  

 

There are advantages and disadvantages of presenting the least squares criterion. On the one 

hand, it introduces the method of least squares, which is useful for understanding other 

fundamental statistical concepts (e.g. variance, correlation, regression, normalization). On the 

other hand, it may deter students from attempting to understand the mean beyond the formula 

because the proof relies on recourse into geometry and calculus. While most university students 

in social science programs will have completed algebra and calculus courses at a secondary 

level, some could be discouraged by the mathematics and revert to memorizing the formula 

rather than learning the rationale behind the formula, which would be counter-productive to 

understanding. Thus, if educators decide to present the proof, they should do so alongside a 

review of the necessary mathematics. 

 

6.  The Geometric form of the Least Squares Conceptualization 
 

Alternatively, the least squares criterion can be presented geometrically. From this point of view, 

the mean is equivalent to the coordinates of a new origin in n-dimensional space that minimizes 

the length of the hypotenuse formed from combining vectors of independent observations. The 

benefit of presenting the geometry of the least squares criterion is that it provides visual 

representations of the mean and the method of least squares. The geometric form also illustrates 

how the Pythagorean Theorem, which is often referenced in popular culture (e.g. The Wizard of 

Oz, The Simpsons), can be used in the context of statistics.  

 

The rationale for this conceptualization is illustrated in Figure 3 with a distribution that contains 

two observations. As shown in Figure 3, a distribution with two independent observations can be 

represented in 2D space as orthogonal vectors originating from the standard origin. The two 

vectors can be joined to create a right triangle. The Pythagorean Theorem can be used to 

determine the length of the hypotenuse of the right triangle: 

 



x2x1 
2

 y2y1 
2

 .  (7) 
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Figure 3.  A geometric representation of the least squares criterion. A distribution of two independent 

observations {8,16} can be represented as orthogonal vectors. Joining the two vectors produces a right 

triangle. The length of the hypotenuse of the triangle is the square root of the sum of squared deviations of 

the observations from the origin. The top graph demonstrates the length of the hypotenuse (dashed line) 

when the origin is set at (0,0). The bottom graph demonstrates the length of the hypotenuse (dashed line) 

when the origin is set at the value of the mean (12,12). If the mean is used as the origin, the length of the 

hypotenuse (i.e. sum of squared deviations) is at a minimum.   
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Note that the squared length of the hypotenuse is equal to the sum of the squared deviations of 

the observations from the standard origin. The selection of (0,0) as the origin is arbitrary. 

According to the least squares criterion, a measure of central tendency should minimize the sum 

of squared deviations.  Geometrically, the least squares criterion amounts to selecting a new set 

of coordinates for the origin that minimize the length of a hypotenuse formed from combining 

vectors of independent observations. As the bottom panel of Figure 3 shows, the ideal 

coordinates for the origin will be equal to the value of the mean. Thus, the mean can be 

understood as the optimal location of the origin for minimizing the length of a hypotenuse 

formed from combining vectors of independent observations. Although this example is in 2D 

space, the rationale generalizes to a distribution of size n in n-dimensional space using the 

generalized Pythagorean Theorem (Lin and Lin 1990). Note that this is constrained to situations 

where the origin is in the form of 



(a,a,. . . ,a). 
 

7.  Presenting the Least Squares Conceptualizations in the Classroom 
 

The fulcrum conceptualization provides an ideal starting point for presenting the least squares 

criterion. Recall that the fulcrum conceptualization illustrates that the sum of deviations from the 

mean is equal to zero. Importantly, the fulcrum conceptualization brings attention to the 

importance of using deviations from a point in the distribution as a means of determining a 

suitable measure of central tendency. Once students realize the relevance of calculating 

deviations, they can be asked to develop their own mathematical criterion for a measure of 

central tendency and express it algebraically. If they can provide an algebraic expression for their 

criterion, then they can be asked to use their criterion to derive a formula for a measure of central 

tendency. If they cannot develop their own criterion, they can be encouraged to speculate about 

the mathematical properties of an ideal measure of central tendency. After students have 

provided some speculative responses, they can investigate whether minimizing the sum of 

squared deviations is a desirable criterion, and if so, how they can determine the value that 

minimizes the sum of squared deviations.  

 

To facilitate insight into the algebraic and geometric forms of the least squares criterion, we 

developed an interactive computer exercise for students. The exercise can be downloaded at: 

http://www.amstat.org/publications/jse/v19n2/LeastSquaresDemonstration.zip. Unzip the file 

named LeastSquaresDemonstration.nbp.    

 

To run the file requires the Wolfram Mathematica


 Player to be installed on the computer. The 

software can be downloaded for free at: http://www.wolfram.com/cdf-player/.  Follow the 

instructions below: 

 

 Go to http://www.wolfram.com/cdf-player/.   

 Enter an e-mail address in the response box.  

 Click on the Start Download button.  After you have installed the software on your 

computer then you should be able to open the file LeastSquaresDemonstration.nbp.  

(Note – You must Enable Dymanics to run the demonstration.) 

http://www.amstat.org/publications/jse/v19n2/LeastSquaresDemonstration.zip
http://www.wolfram.com/cdf-player/
http://www.wolfram.com/cdf-player/
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The exercise (see Appendix B) depicts, for a distribution of two data, how the sum of squared 

deviations varies as a function of the value of the mean, and similarly, how the length of a 

hypotenuse varies as a function of the value of the origin. When the appropriate value of the 

mean is selected, or when the value of the mean is used as the origin, students can discover that 

the sum of squared deviations or the length of the hypotenuse is at a minimum, respectively. We 

recommend that students complete the exercise only after the least squares conceptualizations 

have been discussed in the classroom. A worksheet for the exercise can be found in Appendix B. 

   

8. The Vector Conceptualization  
 

Analytic geometry can be used to illustrate how fundamental concepts such as central tendency, 

variability, degrees of freedom, correlation, and regression are based on a small number of 

underlying principles that arise naturally from manipulating vectors in Euclidian n-dimensional 

space. Although some educators consider geometric representations to be more insightful for 

novices compared with algebraic representations (Margolis 1979; Bryant 1984; Saville and 

Wood 1986; Bring 1996), based on our experiences, we feel that the analytic geometry approach 

is not suitable for the majority of social science students at the undergraduate level because they 

become overwhelmed with the mathematics. Thus, the final conceptualization is intended for 

advanced undergraduate or graduate level students who are interested in learning how analytic 

geometry can be used to express statistical concepts.  

 

Within the context of analytic geometry, the mean can be conceptualized as a projection of an n-

dimensional observation vector onto a one-dimensional subspace that contains vectors with a 

constant at each component (Wickens 1995). The vector in the subspace that has the shortest 

distance to the observation vector will have the value of the mean at each component.  

 

In the geometric approach, a distribution of scores is represented in participant space rather than 

in variable space. In participant space, each axis represents a participant rather than a variable. 

Variables are represented as vectors. The components or coordinates of a vector are analogous to 

the scores on a variable.  For example, the distribution {2,3,6,4,4} is represented in participant 

space as a 5-dimensional vector with 5 components, each component representing a participant’s 

score on a variable. In contrast, the distribution in variable space would be represented as 5 

points on a single dimension (i.e. 5 points on a line).  

 

The vector that represents scores in a distribution is called an observation vector and is denoted 

by x. The number of scores dictates the dimensionality of x. If x contains n components, then x 

lies in n-dimensional participant space. Similarly, if every participant has the same score of 1, the 

vector will be specially denoted by 1. An ideal measure of central tendency should produce the 

same value for every participant in the distribution and it should produce a value that is closest to 

all of the scores in the distribution. With this in mind, discovering a measure of central tendency 

using analytic geometry amounts to finding a value (i.e. x ) that when multiplied by 1 produces 

the shortest distance between x and 1x .  

 

The distance between x and 1x  is represented by e:  

 
1xe x .  (8) 
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As Figure 4 illustrates, the shortest distance between x and 1x  occurs when e and 1 are 

perpendicular, that is – when e is at a right angle from 1 and forms a right triangle with x.  

 

 

 
Figure 4. An n-dimensional observation vector, x, is projected onto a one-dimensional subspace. The 

vector in the subspace that is closest to x is



x 1, which is a scalar multiple of the identity vector 1. The 

difference between x and 



x 1 is represented by e. The value of the scalar can be determined by exploiting 

the orthogonally of e and



x 1, that is - by evaluating the dot product of e and



x 1, and solving for x . 

 

Because e and 1 are perpendicular, their dot product is equal to zero, as described by the 

following equation: 

0T 1e . (9) 

 

Note that 
T
 represents the transpose operator.  The value of x that minimizes the distance 

between x and 1x  can be determined by substituting Equation 8 into Equation 9 and solving for

x , which results in the formula for the mean: 

 



(x  x 1)T1  0

(xT1 x 1T1)  0

x i
i1

n

  x n  0

x 

x i
i1

n



n
.

 (10) 

 

We envision this conceptualization to be used in a graduate level course that explores the use of 

analytic geometry in statistics. By presenting the mean as the coordinates of a vector in a 

subspace, students are provided with a concrete example of how vector decomposition and 

projection can be used to express statistical concepts. Thus, the vector conceptualization of the 

mean can be used as a primer for presenting higher-level statistical analysis within the context of 



Journal of Statistics Education, Volume 19, Number 2 (2011) 

 12 

analytic geometry. Indeed, students can apply the same rationale for the proof of the vector 

conceptualization of the mean to derive the formulae for regression coefficients.  

 

9. Conclusion 
 

Obviously, certain conceptualizations will be more appealing to a student in an introductory 

course than others. The socialist conceptualization provides an intuitive explanation for the 

formula, and the fulcrum conceptualization explicitly reveals several mathematical properties of 

the mean. Moreover, both conceptualizations provide a foundation for learning the higher-level 

conceptualizations, and at the same time do not require an extensive recourse into mathematics. 

For these reasons, the socialist and fulcrum conceptualizations are likely to be the most 

accessible to a novice. The algebraic and geometric forms of the least squares criterion are 

suitable for students in upper-year courses who would like a formal proof as to why the mean is 

used as a measure of central tendency or who would like to know how the Pythagorean Theorem 

can be applied in a statistical context. Furthermore, these conceptualizations can be used as a 

primer when teaching the method of least squares. Finally, presenting the mean in the context of 

analytic geometry would be useful for introducing analytic geometry to advanced undergraduate 

or graduate level students, especially in multivariate statistics courses where linear algebra is 

ubiquitous.   

 

Links between conceptualizations can be highlighted in the classroom. For example, the socialist 

conceptualization presents the idea of distributing a sum of scores equally to all members of a 

group. The fulcrum conceptualization extends this idea by seeking to determine a point in the 

distribution that allows for the sum of deviations from that point to be equally distributed or 

balanced among all members of a group. The utility of calculating deviations from a point in a 

distribution in order to determine a method of central tendency can be used to bridge the gap 

between the fulcrum and least squares conceptualizations. Finally, the proof of the vector 

conceptualizations captures aspects of the socialist and fulcrum conceptualizations. In the former 

case, the vector conceptualization seeks to determine an equivalency between a vector that 

represents scores from participants (i.e. x) and a vector that represents a score that is common to 

all the participants (i.e.



x 1). In the latter case, if e is squared and differentiated with respect to x , 

it would result in the same solution described in Equation 5.  

 

In summary, the mean can be characterized as a socialist, a fulcrum, a solution to the least 

squares criterion, a set of ideal coordinates of the origin in n-dimensional space, and the 

coordinates of a vector in a one-dimensional subspace of an n-dimensional participant space. 

Statistics educators can use these conceptualizations of the mean to foster a deeper level of 

understanding in the classroom and encourage students to internalize the semantics of the mean 

in addition to the formula.  
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Appendix A 
 

The purpose of this exercise is to place students in a situation where they propose the socialist 

and fulcrum conceptualizations of the mean. The exercise is a structured classroom discussion, 

where students are encouraged to express speculative solutions to a problem. Below, we describe 

the problem, summarize a discussion with three participants that attempted to solve the problem, 

and provide suggestions for educators who wish to use a similar strategy for presenting the 

socialist and fulcrum conceptualizations in the classroom. The participants were undergraduate 

social science students who had completed an introductory statistics course.  

 

The Problem 

 

Grades are a topic of interest to students. Consequently, a grade comparison problem is well 

suited for fostering insight into the mean. The problem is as follows: 

 

Imagine that your friend recently received his final grade from his introductory statistics 

course. He received a 55 out of 100, and is quite discouraged. In fact, he comes to the 

conclusion that he simply is not good at statistics. Being the kind and statistically literate 

friend that you are, you want to change his mind. Is there any other important information 

that your friend should know about before he makes his conclusion?  

 

Discussion with Participants 

 

All of the participants initially responded to the problem by wanting to know the grades of the 

other students in the course. We provided the participants with a distribution of nine scores, 

which included their friend’s score. The distribution did not contain any outliers. At this point, a 

single strategy emerged from all of the participants: order the scores in the distribution from 

highest to lowest and mark where their friend’s score was in relation to the others. Note that this 

would be an ideal strategy if outliers were present in the distribution.  

 

The participants were asked why they were comparing their friend’s score to every other score. 

They responded by noting that this strategy allows them to compare their friend with the 

majority of the class, and if their friend scored higher than the majority, then their friend should 

not feel bad about his mark. We then noted that, although it is an acceptable strategy, it would be 

quite cumbersome if the class size were 100 or 250 students. We then asked the participants if 

they could discover a method that requires only one comparison. The participants responded by 

comparing their friend’s score with the highest or lowest in the distribution, and that this would 

allow them to determine how their friend performed relative to the poorest or greatest student.  

 

We pointed out to the participants that the lowest or highest score in the distribution does not 

reflect the overall class performance, which the participants agreed was of interest. They 

proposed that the midpoint of the distribution provides a measure of overall class performance. 

According to the participants, the midpoint can be considered representative of the class because 

it equally separates the highest scores from the lowest scores in the distribution and allows for a 

single comparison to be calculated.  
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We intervened here by noting that although the midpoint satisfies our criteria, it does so at the 

cost of ignoring the other scores in the distribution, that is – the value of the midpoint does not 

change if the extreme scores were removed from the distribution or if the cardinality of a score 

changes as long as its rank remains the same. We encouraged the participants to discover an 

alternative method of finding a single value that reflects the overall class performance. All of the 

participants then proposed to calculate the mean, but they could not explain why the equation for 

the mean results in a single value that reflects the overall class performance. We directed the 

participants’ attention to the terms in the equation of the mean, and asked them to speculate on 

why they are calculating the sum of the scores in the distribution. One participant responded that 

the sum ―transcends the data‖, and that it ―means something more than itself‖. We asked the 

participant to elaborate on his idea, but he could only repeat his statement. The other participants 

noted that the sum combines all of the scores in the distribution into a single value, but this value 

is much larger that most of the scores in the distribution. One participant then commented that it 

might be beneficial to take into account the number of scores in the distribution when calculating 

the sum. It was at this point where we described the socialist conceptualization of the mean.  

 

Afterwards, we asked the participants to revisit their initial ―score-by-score‖ comparison 

strategy, but using the mean as the anchor of comparison instead of their friend’s score. The 

participants calculated the mean deviation for every score in the distribution and ranked them in 

order of magnitude. We then asked the participants if the mean deviations offer any useful 

information. One participant commented that mean deviations could be used to determine how 

every other student performed relative to the class as a whole. Another participant noted that 

there would always be positive and negative deviations from the mean.  It was at this point where 

we described the fulcrum conceptualization and ended the discussion. 

 

Psychologically, the participants’ responses to the problem were very interesting. Participants 

initially addressed the problem by adopting a ―local‖ comparison strategy. They compared their 

friend’s score with every other score in the distribution in order to obtain a relative estimate of 

their friend’s competence. However, once they realize that their ―score-by-score‖ comparison 

strategy becomes too cumbersome with a large sample size, they turn their attention to the lowest 

score or highest score in the distribution. At this point, their strategy shifts to more ―global‖ 

comparisons, such that they begin to search for a single score that is representative of the entire 

distribution. After noting that the extremes of the distribution are not representative of overall 

class performance, they use the midpoint to make their comparison. The midpoint is more global 

compared with the highest or lowest score, but it fails to incorporate all of the scores in the 

distribution. To address this problem, the participants proposed the mean, which is a more 

―global‖ comparison compared with the median. 

 

 Suggestions for Educators 

 

A classroom discussion that centers on a problem is ideal for placing students in a situation 

where they discover the socialist and fulcrum conceptualization of the mean on their own. The 

discussion must be structured so that in attempting to solve the problem, students propose: 1) that 

they need to determine a representative value of the distribution; 2) that they need to take into 

account all of the scores in the distribution and that summation serves this purpose; and 3) that 

they must also account for the number of scores in a distribution. Once these proposals have 
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been voiced in the classroom and students agree upon a satisfactory solution to the problem, the 

educator can elaborate on how these proposals relate to the socialist and fulcrum 

conceptualizations.  
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Appendix B 
 

The purpose of this exercise is to illustrate the geometric and algebraic forms of the least squares 

conceptualization of the mean.  

 

Instructions 

 

For this exercise, you will need to download and install the Wolfram Mathematica


 Player, 

which is freely available at: http://www.wolfram.com/cdf-player/. Afterwards, download the 

Mathematica


 notebook file that contains the exercise, which is located at: 

http://www.amstat.org/publications/jse/v19n2/LeastSquaresDemonstration.zip. Unzip the 

notebook file named LeastSquaresDemonstration.nbp.  Once you open the notebook file with the 

Wolfram Mathematica


 Player, you should be presented with two plots, as depicted in Figure 1. 

(Note – You must Enable Dymanics to run the demonstration.) 

 

 
Figure 1. The Least Squares Conceptualizations of the Mean. 

 

The plot on the left illustrates the geometric form of the least squares conceptualization of the 

mean. It contains two vectors (black arrows). Each vector represents a datum. You can change 

the value of each datum by moving the appropriate sliders. The default values for the data are 3 

and 5. The blue line is the hypotenuse that is formed when the two vectors are combined to make 

a right-angle triangle. The red dot represents the location of the origin. The default value is (0,0). 

The dashed green line indicates the permissible locations of the origin.  You can select a new 

location of the origin by moving the slider entitled ―Value of Mean‖.   

http://www.wolfram.com/cdf-player/
http://www.amstat.org/publications/jse/v19n2/LeastSquaresDemonstration.zip
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The plot on the right illustrates the algebraic form of the least squares conceptualization of the 

mean. The green curve represents how the sum of squared deviations varies as a function of the 

value of the mean. The red dot represents a value of the mean. The default value is 0. You can 

change the value of the mean by moving the slider entitled ―Value of Mean‖. 

 

Questions 

 

1. Say you have the following distribution of data: {3,5}.  

a. What is the length of the hypotenuse when the origin is:  

i. (0,0) 

ii. (1,1) 

iii. (3,3) 

iv. (5,5) 

v. (4,4) 

b. Describe what happens to the length of the hypotenuse when the location of the 

origin changes. What happens to the length of the hypotenuse when the location of 

the origin is equal to the appropriate value of the mean for this distribution?  

c. Aside from using the value of the mean as the location for the origin, is there any 

other location for the origin that can produce a shorter hypotenuse?  

d. Describe what happens to the sum of squared deviations when the value of the 

mean changes. When the appropriate value of the mean is selected, what happens 

to the sum of squared deviations? 

e. Is there any other value that can produce a smaller sum of squared deviations? 

2. Create your own distribution of data. You can select any number from 1-100 for Datum 

#1 and Datum #2.  

a. Calculate the mean for your distribution. 

b. When the appropriate value of the mean for your distribution is used as the origin, 

what happens to the length of the hypotenuse? 

c. Describe what happens to the sum of squared deviations as the value of the mean 

changes. When the appropriate value of the mean is selected, what happens to the 

sum of squared deviations? 

3. Can you think of a distribution where the sum of squared deviations or the length of the 

hypotenuse will be equal to zero? 

4. What can you conclude in regards to the relationship between the mean and the sum of 

squared deviations or the length of the hypotenuse? 
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