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Introduction. 

This paper discusses the legacy technique for measuring processor utilization in Windows that is based 

on sampling. This technique for measuring processor utilization is efficient and generally adequate for 

capacity planning. However, it lacks the precision performance engineers require for application 

optimization and tuning, particularly over small measurement intervals. The paper then introduces 

newer techniques for measuring processor utilization in Windows that are event-driven. The event-

driven approaches are distinguished by far greater accuracy, enabling the reconstruction of the precise 

path that threads, processes and processors take when they execute. Gathering event-driven 

measurements entails significantly higher overhead, but measurements indicate this overhead is well 

within acceptable bounds on today’s high powered server machines.  

As of this writing, Windows continues to report measurements of processor utilization based on the 

legacy sampling technique. The more accurate measurements that are derived using events are gaining 

ground, however, and can be expected to supplant the legacy measurements in the not too distant 

future.  

While computer performance junkies like me relish the prospect of obtaining more reliable and more 

precise processor busy metrics, the event-driven measurements do leave several very important issues 

in measuring CPU utilization unresolved. These include validity and reliability issues that arise when 

Windows is running as a guest virtual machine under VMware, Zen, or Hyper-V that impact the accuracy 

of most timer-based measurements. (In an aside, mitigation techniques for avoiding some of the worst 

measurement anomalies associated with virtualization are discussed.) 

A final topic concerns characteristics of current Intel-compatible processors that undermine the 

rationale for using measurements of CPU busy based solely on thread execution time. We discuss the 

value of using internal hardware measurements of the processor’s instruction execution rate to 

understand and improve application performance. While we make the case for using internal hardware 

measurements of the processor’s instruction execution rate to augment more conventional measures of 

CPU busy, we also acknowledge some of the current barriers that advocates of this approach encounter 

when they attempt to put it into practice today. 

Sampling processor utilization. 

The technique used to calculate processor utilization in Windows is based on gathering periodic samples 

of the processor’s execution state. This legacy technique is characterized by low overhead, yielding 

measurements with a reasonable degree of accuracy over the kinds of time intervals that computer 

capacity planning, for example, requires. The sampling methodology was originally devised 20 years ago 

for Windows NT. Since one of the original design goals of Windows NT was to achieve a high degree of 
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hardware independence, the measurement methodology was also designed so that it was not 

dependent on any specific set of processor hardware measurement features.  

The familiar % Processor Time counters in Perfmon are the measurements derived using this sampling 

technique. The measurement procedure uses an OS Scheduler periodic clock interrupt to sample the 

execution state of the processor once per interval. The periodic clock interrupt is a high priority, timer-

based, hardware clock interrupt that is programmed to fire 64 times per second, once approximately 

every 15.6 ms. This clock interrupt is used to calibrate the system’s Time of Day clock, which can then be 

retrieved by calling the GetSystemTime function. 

The operating system’s clock interrupt routine performs additional functions, in addition to updating the 

current system clock value. One of those other functions is CPU accounting, which is performed by 

recording the current execution state of each processor, immediately prior to the occurrence of clock 

interrupt. If the processor was running the Idle loop when the OS’s periodic interrupt occurs, it is 

recorded as an Idle Time sample. If the processor was running some application thread, that is recorded 

as a CPU busy sample. Busy samples are then accumulated continuously at both the thread and process 

level. Since roughly 64 clock interrupts occur each second, the % Processor Time measurements are 

based on samples of the processor execution state gathered 64 times per second.1 

This periodic sampling of the execution state of each processor is the source of the processor utilization 

measurements at the processor, process and thread level in both Perfmon and TaskMan, as well any 

number of Windows API calls that allow applications to retrieve that measurement data. Figure 1 

                                                           
1
  The periodic clock interrupt advances the system clock value by a 15.6 ms “tick.” You can access the precise value that the OS 

uses between timer interrupts by calling  the GetSystemTimeAdjustment() function.  
  
This difference between the precision with which the system reports clock values and the actual granularity of system Time of 
Day clock value updates is the source of endless confusion in Windows. See, for example, Raymond Chen’s “The Old New Thing” 
blog posting “Precision is not the same as accuracy” on this subject. Unfortunately, Chen’s discussion of the issue on his popular 
Microsoft insider blog probably raises as many questions as it answers. The range of comments from his readers further 
illustrates some of the confusion around this topic. 
 
Clock and timer values in Windows are reported in a standardized hh:mm:ss format, with fractional seconds reported to seven 
decimal digits. Thus, each logical “tick” of the system clock denotes 100 nanoseconds of elapsed time. However, if you write a 
program that spins in a loop, checking the value of the Windows Time of Day clock continuously, you will observe the clock 
value remains stationary until it is updated during the periodic clock interrupt. When your program resumes execution 
following the clock interrupt, you will then observe a clock “tick” of about 15.6 milliseconds added to the previous value of the 
system clock. 
 
Another source of confusion is the bewildering array of system Time functions available in Windows. See the “Time Functions” 
article in the official MSDN library documentation for details.  
 
A high resolution timer facility called QueryPerformanceCounter was introduced in Windows 2000. The names of the 
QueryPerformanceCounter and QueryPerformanceFrequency time functions that are used in obtaining high resolution clock 
values in Windows reflect their origin in solving the clock resolution problem specifically for the purpose of performance 
measurement. Unfortunately, the API names serve to obscure their key role in Windows in obtaining more precise 
measurements of elapsed time. Another source of confusion is that the official documentation for these API calls does not give 
developers an example of how to use them to obtain elapsed time measurements. Also, largely undocumented is the fact that 
since their original introduction, the implementation of the QueryPerformanceCounter and QueryPerformanceFrequency 
functions varies significantly from OS release to release, a topic that it will be necessary to return to later in this article.  

 

http://msdn.microsoft.com/en-us/library/ms724390(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724394(VS.85).aspx
http://blogs.msdn.com/b/oldnewthing/archive/2005/09/02/459952.aspx
http://msdn.microsoft.com/en-us/library/ms725473(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644904(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644904(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms644905(v=VS.85).aspx
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illustrates the calculation of CPU time based on this sampling of the processor execution state as 

reported in the Performance tab of the Windows Task Manager.  

 

FIGURE 1. THE PERFORMANCE TAB OF THE WINDOWS TASK MANAGER REPORTS PROCESSOR UTILIZATION BASED ON SAMPLING THE 

PROCESSOR EXECUTION STATE ONCE EVERY QUANTUM, APPROXIMATELY 64 TIMES PER SECOND. 

When the periodic clock interrupt occurs, the OS Scheduler performs various tasks, including adjusting 

the dispatching priority of threads that are currently executing with the intention of stopping the 

progress of any thread that has exceeded its time slice. Using the same high priority OS Scheduler clock 

interrupt that is used for CPU accounting to implement processor time-slicing is the reason the interval 

between Scheduler interrupts is often known as the quantum. At one time in Windows NT, the quantum 

between clock interrupts was set based on the speed of the processor; the faster the processor the 

shorter the quantum interval and the more frequently the OS Scheduler would gain control. Today, 

however, the quantum value is constant across processor hardware. 

Another measurement function that is performed by the OS Scheduler’s clock interrupt is to take a 

sample of the length of the processor Ready queue that contains threads that are queued for execution. 

The System\Processor Queue Length counter in Perfmon is an instantaneous counter that reflects the 

last measurement taken by the OS Scheduler’s clock interrupt service routine of the current number of 

Ready threads waiting in the OS Scheduler queue. Thus, the System\Processor Queue Length counter 

represents a singleton observation, and needs to be interpreted with that in mind.  
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The processor Queue Length metric is sometimes subject to anomalies due to the kind of phased 

behavior you can often see on an otherwise idle system.2 Even on a mostly idle Windows system, a 

sizable number of threads can be observed effectively waiting on the same clock interrupt (typically, 

waking up once per second to look for some changed state). When Perfmon is running, one of these 

periodically awaking threads happens to be the Perfmon measurement thread, often also set to cycle 

once per second. This situation is depicted in Figure 2a, showing the state of the machine at the time the 

OS Scheduler’s periodic clock interval fires.  

FIGURE 2A. PROCESSOR QUEUE LENGTH MEASUREMENTS IN WINDOWS ARE SUBJECT TO AN ANOMALY DUE TO THE “CLUMPING” 

BEHAVIOR OF THREADS WAITING ON TIMER INTERRUPTS OFTEN OBSERVED IN AN OTHERWISE IDLE MACHINE. A SIZABLE NUMBER OF 

THREADS CAN OFTEN BE FOUND WAITING ON THE SAME TIMER INTERRUPT. TYPICALLY, THESE ARE WORKER THREADS DESIGNED TO WAKE 

UP ONCE PER SECOND TO LOOK FOR SOME CHANGE IN MACHINE OR APPLICATION STATE. AS ILLUSTRATED, THE PERFMON MEASUREMENT 

THREAD, CYCLING ONCE PER SECOND, IS OFTEN ONE OF THESE SLEEPING THREADS. THE DRAWING DEPICTS THE OS SCHEDULER’S 

PERIODIC CLOCK INTERVAL FIRING, WHICH SERVES TO UPDATE THE SYSTEM CLOCK, WHICH WILL THEN WAKE UP ANY SLEEPING THREAD 

WHOSE SLEEP TIMER HAS EXPIRED.  

When the clock interrupt updates the current Windows system clock value, the OS transitions any 

waiting threads whose elapsed sleep timer has expired to the Ready state, as depicted in Figure 2b. On 

an idle system, sleeping threads tend to clump together, such that a bunch of them are awakened by the 

same timer interrupt. These timer-activated threads wake up, discover rather quickly that the state 

change they are checking for has not occurred, and then quickly go back to sleep. The OS Scheduler’s 

Ready queue is ordered by priority, so the high priority Perfmon measurement thread sorts to the top of 

the Ready queue, as illustrated in Figure 2b.  

                                                           
2
 These anomalies were first reported in a paper entitled “Interpreting Windows NT Processor Queue Length 

Measurements” by Ding, et. al., published in CMG Proceedings, 2002.  

http://www.cmg.org/cgi-bin/search.cgi?q=Ethan+Bolker&x=32&y=6
http://www.cmg.org/cgi-bin/search.cgi?q=Ethan+Bolker&x=32&y=6
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FIGURE 2B. AFTER THE OS SCHEDULER’S CLOCK INTERRUPT HANDLER UPDATES THE SYSTEM CLOCK VALUE, THE PERFMON 

MEASUREMENT THREAD TRANSITIONS TO THE READY STATE BECAUSE ITS SLEEP TIMER HAS EXPIRED. BECAUSE THE PERFMON 

MEASUREMENT THREAD EXECUTES AT A HIGH PRIORITY, IT SORTS TO THE TOP OF THE SCHEDULER’S QUEUE OF READY THREADS. AS 

ILLUSTRATED, THE CLOCK INTERRUPT MAY ALSO SERVE TO AWAKEN A NUMBER OF OTHER SLEEPING THREADS AT THE EXACT SAME TIME. 

The Perfmon measurement thread executes at a high priority level, so it is scheduled for execution 

ahead of any other User mode threads that were also awakened by the same Scheduler clock tick, as 

illustrated in Figure 2b. When the clock interrupt handler completes its processing, including performing 

its CPU usage accounting functions, the Perfmon measurement thread is ready to execute next. The 

effect is that at the time the Processor ready queue length is measured, there are likely to be a 

disproportionately high number of Ready Threads, as depicted in Figure 2c.  
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FIGURE 2C. WHEN THE CLOCK INTERRUPT HANDLER COMPLETES ITS PROCESSING, INCLUDING PERFORMING ITS CPU USAGE ACCOUNTING 

FUNCTIONS, THE PERFMON MEASUREMENT THREAD EXECUTES NEXT. IT CAPTURES A VALUE FOR THE SYSTEM\PROCESSOR QUEUE 

LENGTH COUNTER THAT IS DISPROPORTIONATELY HIGH DUE THE “CLUMPING” BEHAVIOR OBSERVED ON RELATIVELY IDLE MACHINES. 

The result of this “clumping” behavior is that the periodic OS Scheduler interrupt that updates the 

system Time of Day clock, has a tendency to wake a bunch of sleeping threads up at the exact same 

time. The awakened threads then flood the OS dispatching queue. If one of these threads is the Perfmon 

measurement thread that is responsible for gathering the Processor Queue Length measurement, it sees 

an elongated queue. This “clumping” behavior can easily distort the measurements Perfmon gathers. 

Compared to the modeling assumption where processor scheduling is subject to random arrivals, one 

observes a disproportionate number of Ready Threads waiting for service, even (or especially) when the 

processor itself is not very busy overall. 

This anomaly is best characterized as a low-utilization effect that perturbs the measurement when the 

machine is loafing. It generally ceases to be an issue when processor utilization climbs or there are more 

processors available on the machine. But this bunching of timer-based interrupts remains a serious 

concern, for instance, whenever Windows is running as a guest virtual machine under VMware or Hyper-

V. Another interesting side discussion is how this clumping of timer-based interrupts interacts with 

power management, but I do not intend to venture further into that subject here. 

Sampling. To summarize, the CPU utilization measurements at the system, process and thread level in 

Windows are based on a sampling methodology. Similarly, the processor queue length is also sampled. 

Like any sampling approach, the data gathered is subject to typical sampling errors, including  

 accumulating a sufficient number of sample observations to be able to make a reliable statistical 

inference about the underlying population, and 
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 ensuring that there aren’t sources of sampling error that causes sub-classes of the underlying 

population to be under or over-sampled systematically 

So, these CPU measurements face familiar issues with regard to sampling size and the potential for 

systematic sampling bias, as well as the usual difficulty in ensuring that the sample data is actually 

representative of the underlying population (something known as non-sampling error). For example, the 

interpretation of the CPU utilization data that Perfmon gathers at the process and thread level is subject 

to limitations based on a small sample size for collection intervals less than, say, 15 seconds. At one 

minute intervals, there are enough samples to expect accuracy within 1-2%, a reasonable trade-off of 

precision against overhead. Over even longer measurement intervals, say 5 or 10 minutes, the current 

sampling approach leads to minimal sampling error, except in anomalous cases where there is some 

other source of systematic under-sampling of the processor’s execution state.    

Small sample size is also the reason that Windows does not currently permit Perfmon to gather 

performance data at intervals more frequent than once per second. Running performance data 

collection at intervals of 0.1 seconds, for example, the impact of relying on a very small number of 

processor execution state samples is quite evident. At 0.1 second intervals, processor times are 

calculated based on just 5 or 6 samples per interval. If you are running a micro-benchmark and want to 

access the same Thread\% Processor Time counters that Perfmon uses at 0.1 second intervals, you are 

looking for trouble. Under these circumstances, the % Processor Time measurements lose their 

resemblance to a continuous function over time.  

An event-driven approach to measuring processor execution state. 

The limitations of the legacy approach to measuring CPU busy in Windows and the need for more 

precise measurements of CPU utilization are recognized in many quarters across the Windows 

development organization at Microsoft. The legacy sampling approach is doubtless very efficient, and 

this measurement facility was deeply embedded in the OS kernel’s Scheduler facility, a chunk of code 

that is very risky to tamper with. But, for example, more efficient power management, something that is 

crucial for battery-powered Windows devices, strongly argues for an event-driven alternative. You do 

not want the OS to wake up from a low power state regularly on an idle machine just to perform its CPU 

usage accounting duties, for example.  

A straightforward alternative to periodically sampling the processor execution state is to measure the 

time spent in each processor state directly. This is accomplished by instrumenting the phase state 

transitions themselves. Processor state transitions in Windows are known as context switches. A context 

switch occurs in Windows whenever the processor switches the processor execution context to run a 

different thread. Processor state transitions also occur as a result of high priority Interrupt Service 

Routines (ISRs) gaining control following a device interrupt, as well as the Deferred Procedure Calls 

(DPCs) that ISRs schedule to complete the interrupt processing. By recording the time that each context 

switch occurs, it is possible to construct a complete and an accurate picture of CPU consumption.3 

                                                           
3
 See a two-part article in MSDN Magazine, entitled “Core OS Events in Windows 7,” written by Insung Park and Alex 

Bendetovers and published beginning in September 2009. The authors are, respectively, the architect and lead developer of the 

http://msdn.microsoft.com/en-us/magazine/ee412263.aspx
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It helps to have a good, general understanding of thread scheduling in the OS in order to interpret this 

stream of events. Figure 3 is a diagram depicting the state machine associated with thread execution. At 

any point in time, a thread can be in only one of the three states indicated: Waiting, Ready, or Running. 

The state transition diagram shows the changes in execution state that can occur. A Waiting thread is 

usually waiting for some event to occur, perhaps a Wait timer to expire, an IO operation to complete, a 

mouse or keyboard click that signals user interaction with the application, or a synchronization event 

from another thread that indicates it is OK to continue processing.  

A thread that is Ready to run is placed in the Dispatcher’s Ready Queue, which is ordered by priority. 

When a processor becomes available, the OS Scheduler selects the highest priority thread on the Ready 

Queue and schedules it for execution on that processor. Once it is running, a thread remains in the 

Running state until it completes its execution cycle and transitions back to the Wait state. An executing 

thread can also be interrupted because a higher priority execution unit needs to run (this is known as 

preemptive scheduling) or it is interrupted by the OS Scheduler because its time-slice has expired. A 

Running thread can also be delayed because of a page fault, accessing data or an instruction in virtual 

memory that is not currently resident in physical memory. These thread execution time delays are often 

referred to as involuntary waits.  

Wait Ready Running

Initial Scheduling Delay

Execution Time Delays

Completed

Ready 
Queue

 

FIGURE 3. A STATE MACHINE FOR THREAD EXECUTION. 

Figure 4 associates these thread execution state transitions with the ETW events that record when these 

transitions occur. The most important of these is the CSwitch event record that is written on every 

processor context switch. The CSwitch event record indicates the thread ID of the thread that is entering 

                                                                                                                                                                                           
ETW infrastructure. The article provides a conceptual overview describing how to use the various OS kernel events to 
reconstruct a state machine for processor execution, along with other diagnostic scenarios. Park and Bendetovers report, “In 
state machine construction, combining Context Switch, DPC and ISR events enables a very accurate accounting of CPU 
utilization.” 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa964744(v=vs.85).aspx
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the Running state (the new thread id), the thread ID that was displaced (the old thread ID), and provides 

the Wait Reason code associated with an old thread ID that is transitioning from Running back to the 

Wait state. The processor number indicating which logical CPU has undergone this state change is 

provided in an ETW_Buffer_Context structure associated with the ETW standard record header. Thread 

0 from Process 0 indicates the Idle thread, which is dispatched on a processor whenever there are no 

Ready threads waiting for execution. While a thread other than the Idle thread is “active,” the CPU is 

considered busy.  

Conceptually, a context switch event adheres to a state switch pattern, with a time stamp identifying 

when the context switch occurred. The CPU time of a thread is the amount of time it spends in the 

Running state. It is measured using the CSwitch events that show the thread transitioning from Ready to 

the Running state and the CSwitch events that show that thread transitioning back from the Running 

state to Waiting. To calculate processor busy, you summarize the amount of time each processor spends 

when the Idle thread is active and subtract from 100% over the measurement interval. 

Wait Ready Running

Initial Scheduling Delay

Execution Time Delays

Completed

Ready 
Queue

CSwitch(in,…)ReadyThread

Priority ¯ 

CSwitch(,out,WaitReason,…)

 

FIGURE 4. THE STATE TRANSITION DIAGRAM FOR THREAD EXECUTION, INDICATING THE ETW TRACE EVENTS THAT MARK THREAD STATE 

TRANSITIONS. 

One complication in this approach is that the ETW infrastructure does not guarantee delivery of every 

event to a Listener application. If the Listener application cannot keep up with the stream of events, 

then ETW will drop memory-resident buffers filled with events rather than queue them for delivery 

later. CSwitch events can occur at very high rates, 20,000-40,000 times per second per CPU are not 

unusual on busy machines, so there is definitely potential to miss enough of the context switch events 

to bias the calculations that result. In practice, handling the events efficiently in the ETW Listener 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa363716(v=VS.85).aspx
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application and making appropriate adjustments to the ETW record buffering options can be used to 

minimize the potential for missing events. 

To see this event-driven processor execution state measurement facility at work, access the Resource 

Monitor application (resmon.exe) that is available beginning in Vista and Windows Server 2008. 

Resource Monitor can be launched directly from the command line, or from either Performance Monitor 

plug-in or Task Manager Performance tab. Figure 5 displays a screen shot that shows Resource Monitor 

in action on a Windows 7 machine, calculating CPU utilization over the last 60 seconds of operation, 

breaking out that utilization by process. The CPU utilization measurements that ResMon calculates are 

based on the context switch events. These measurements are very accurate, about as good as it gets 

from a vantage point inside the OS. 

 

FIGURE 5. THE WINDOWS 7 RESOURCE MANAGER APPLICATION. 

The Resource Monitor measures CPU busy in real time by listening to the ETW event stream that 

generates an event every time a context switch occurs. It also produces similar reports from memory, 

disk, and network events.  

To summarize these developments, this trace-driven measurement source positions the Windows OS so 

it could replace its legacy CPU measurement facility with something more reliable and accurate 

sometime in the near future. Unfortunately, converting all existing features in Windows, including 

Perfmon and Task Manager, to support the new measurements is a big job, not without its 

complications and not always as straightforward as one would hope. But we anticipate future versions 
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of the Windows OS will adopt an accurate, event-driven approach to measuring processor utilization, 

ultimately replacing the legacy sampling approach that Task Manager and Perfmon rely on today.  

Using xperf to analyze CSwitch events 

The same CPU busy calculations that the Resource Manager in Windows 7 makes can also be performed 

after the fact using the event data from ETW. This is the technique used in the Windows Performance 

Toolkit (WPT, but which is better known around Microsoft as xperf), for example, to calculate CPU usage 

metrics.  

Once you have downloaded and installed the Windows Performance Toolkit, you can launch a basic ETW 

collection session using the following xperf command: 

xperf -on DiagEasy 

Then, after you have accumulated enough data, issue another command to stop tracing and capture the 

event stream to a file: 

xperf -d cputrace.etl 

Next, process the cputrace.etl file using the xperfview app. After the trace file is loaded, xperfview 

provides visualizations that are very similar to ResMon. See Figure 6 for an example. 

http://msdn.microsoft.com/en-us/performance/default.aspx
http://msdn.microsoft.com/en-us/performance/default.aspx
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FIGURE 6. CPU UTILIZATION GRAPHS IN XPERFVIEW, BASED ON ETW CONTEXT SWITCH EVENT DATA GATHERED WITH THE XPERF UTILITY. 

ADDITIONAL ISR AND DPC EVENTS ARE USED TO CALCULATE THE AMOUNT OF TIME DEVICE DRIVERS SPEND PROCESSING INTERRUPTS. 

Figure 6 illustrates several of the CPU utilization graphs that xperfview creates from the context switch 
event stream. To help make the graph more readable, I filtered out Idle time calculation for all but two 
of the logical processors on this machine. (The machine illustrated has 8 logical CPUs.) To gain insight 
into what high priority Interrupt Service Routines (ISRs) and DPCs are running, ISR and DPC events 
should also be gathered, which the DiagEasy event profile in xperf does automatically. (Windows device 
driver developers are very interested in them. For an example, see this blog posting discussing using the 
xperf ETW utility to capture CPU consumption by the TCP/IP network driver stack.)  

http://msdn.microsoft.com/en-us/library/aa964780(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa964748(v=VS.85).aspx
http://blogs.msdn.com/b/ddperf/archive/2008/06/10/mainstream-numa-and-the-tcp-ip-stack-part-i.aspx
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With xperfview, you can also request a Summary Table which displays CPU usage by process (and 

thread) by right-clicking on the CPU Usage graph and accessing the pop-up context menu. An example of 

the CPU Scheduling Aggregate Summary Table is illustrated in Figure 6. It is similar to the one ResMon 

produces. The data here was gathered while running a multi-threaded CPU soaker program called 

ThreadContentionGenerator while ResMon was also active. You can see that the calculation in Figure 7 

roughly mirrors the results shown in Figure 5 for ResMon, allowing for some variation that is to be 

expected since the intervals themselves are not identical. The xperf interval shown in Figure 6 is 

approximately 500 seconds long, while ResMon maintains a rolling window that is only 60 seconds in 

duration. The ResMon screen shot was taken somewhere in the middle of the longer xperf tracing 

session.  

 

FIGURE 7. THE CPU SCHEDULING AGGREGATE SUMMARY TABLE CALCULATED BY XPERFVIEW. THE RESULTS OF THESE CALCULATIONS 

CLOSELY RESEMBLES THE ROLLING ONE-MINUTE CALCULATION REPORTED BY THE RESOURCE MONITOR IN FIGURE 5. 

For some perspective on the volume of trace events that can be generated, the binary .etl trace file 

produced in this example was approximately 325 MB on disk for a DiagEasy trace session that ran for 

more than ten minutes. Running with the xperf defaults, I received a notification when the trace session 

closed that three ETW 64K buffers of data were dropped during the trace because xperf was unable to 

keep pace with processing the event stream in real-time. 

The Context Switch event also provides the old thread’s Wait Reason code, which helps you to 

understand why the sequence of thread scheduling events occurred. For reference, a Windows context 

switch is defined here, while the contents of the ETW (Event Tracing for Windows) context switch event 

record are defined here, including a list of the current thread WaitReason codes.  

http://msdn.microsoft.com/en-us/library/ms682105(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa964744(VS.85).aspx
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Note that you can measure CPU queue time accurately from the ETW events, an important indicator of 

processor contention when the processor becomes saturated. As illustrated in Figure 4, the transition 

from the Wait state to the Ready state is marked by a ReadyThread event record. The time between the 

ReadyThread event and a subsequent CSwitch event marking its transition to Running is one form of 

CPU Queue time. A second form of CPU queue time is the time between a CSwitch(…,out,WaitReason,…) 

where the WaitReason is either a Preempt or time-slice quantum expiration and a subsequent re-

dispatch. Both forms of CPU queue time can be measured accurately using ETW. 

When precision in understanding patterns of CPU consumption is required, post-processing the ETW 

context switching event stream is a much better way to proceed than attempting to use the Windows % 

Processor Time performance counters. Measuring CPU consumption from the context switch events is 

considerably more precise than, for example, the Windows performance counter data available in 

Perfmon that report processor utilization at the system and process level based on processor state 

sampling. Such high precision measurements are not always required, of course, and processing the 

ETW context switching event stream is relatively expensive due to the extremely high volume of trace 

data that you must deal with.  

Measuring thread execution state. 

Besides measuring processor utilization at the system level, the stream of context switch events can also 

be re-constructed to drill into CPU consumption at the process and thread level. An exemplary example 

of this approach is the Visual Studio Profiler’s Concurrency Visualizer, available in Visual Studio 2010. 

(For reference, see “Performance Tuning with the Concurrency Visualizer in Visual Studio 2010 in the 

Visual Studio 2010 Profiler,” an MSDN Magazine article written by the tool’s principal architect, Hazim 

Shafi.)  The Concurrency Visualizer gathers Context Switch events to calculate processor utilization for 

the application being profiled.  

The VS Concurrency Visualizer creates a system-level CPU Utilization View with an interesting twist – the 

view pivots based on the application you are profiling, a perspective that matches that of a software 

performance engineer engaged in a performance investigation. Based on the sequence of context switch 

trace events, the Concurrency Visualizer calculates processor utilization by the process, aggregates it for 

the current selection window, and displays it in the CPU Utilization View. In the CPU Utilization View, all 

other processor activity for processes (other than one being profiled) is lumped together under a 

category called “Other Processes.” System-processes and the “Idle process,” which is a bookkeeping 

mechanism, not an actual process that is dispatched, are also broken out separately. See Dr. Shafi’s 

article for more details. (For reference, Figure 12 below illustrates the CPU Utilization View.) 

The Concurrency Visualizer’s primary focus is on being able to reconstruct the sequence of events that 

impact an application’s execution progress. The Concurrency Visualizer’s Threads View is the main 

display showing an application’s execution path. The view here is of execution progress on a thread by 

thread basis. For each thread in your application, the Concurrency Visualizer shows the precise 

sequence of context switch events that occurred. These OS Scheduler events reflect that thread’s 

execution state over time. See Figure 8 for an example of this view. 

http://msdn.microsoft.com/en-us/magazine/ee336027.aspx
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 FIGURE 8. SCREEN SHOT OF THE CONCURRENCY VISUALIZER ILLUSTRATING THREAD PREEMPTION BY A HIGHER PRIORITY SYSTEM 

ROUTINE. 

Figure 8 shows the execution path of six application threads, a Main thread, a generic worker thread, 

and 4 CLR (the Common Language Runtime for .NET languages) worker threads that the application 

created by instantiating a .NET ThreadPool object. (There were originally more threads than this, but I 

chose to hide those that were inactive over the entire run.) For each thread, the execution state of the 

thread – whether it is running or whether it is blocked – is indicated over time.  

The upper half of the display is a timeline that shows the execution state of each thread over time. The 

execution progress of each thread display is constructed horizontally from left to right from rectangles 

that indicate the start and end of a particular thread state. An interval when the thread was running 

shows as green. An interval where the thread is sleeping is shown in blue. A ready thread that is blocked 

from executing because a higher priority thread is running is shown in yellow. (This state is labeled 

“preemption.”) A thread in a synchronization delay waiting on a lock is visualized as red. 

On the lower left of the display is a Visible Timeline Profile. This summarizes the state of all threads that 

are visible within the selected time window. In the screen shot in Figure 8, I have zoomed into a time 

http://msdn.microsoft.com/en-us/library/3dasc8as(VS.100).aspx
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window that is approximately 150 milliseconds wide. During that interval, the threads shown were in a 

state where they were actively executing instruction only 11% of the time. For 25% of the time interval, 

threads were blocked waiting on a lock. Finally, there is a tabbed display at the lower right. If you click 

on the “Profile Report” tab, a histogram displays that summarizes the execution state of each individual 

thread over the time window. In the screen shot, I have clicked on the “Current stack” tab that displays 

the call stack associated with the ETW context switch event. If the thread is blocked, the call stack 

indicates where in the code the thread will resume execution once it unblocks. We will drill into that call 

stack in a moment. 

Note: The Threads View also displays call stacks from processor utilization samples that ETW gathers on 

a system-wide basis once per millisecond. Call-stacks samples are visible during any periods when the 

thread is executing instructions (and ETW execution sampling is active).4 

The Concurrency Visualizer screen shot in Figure 8 illustrates the calculation of a running thread’s CPU 

queuing delay. Thread 6920, which happens to be a CLR thread pool worker thread, is shown at a point 

in time where it was preempted by a higher priority task. The specific delay that I zoomed in on in the 

screen shot is preemption due to the scheduling of a high priority LPC or ISR – note this category in the 

Concurrency Visualizer also encompasses assorted APCs and DPCs. In this specific example, execution of 

Thread 6920 was delayed for 0.7718 milliseconds. According to the trace, that is the amount of time 

between Thread 6920 being preempted by a high priority system routine and a subsequent context 

switch when the ready thread was again re-dispatched.  

The tool also displays the call stack of the preempted thread. The call stack indicates that the CLR’s 

garbage collector (GC) was running at the time that thread execution was preempted. From the call 

stack, it looks like the GC is sweeping the Large Object Heap (LOH), trying to free up some previously 

allocated virtual memory. This is not an opportune time to get preempted. You can see that one of the 

other CLR worker threads, Thread 6420, is also delayed. Notice from the color coding that Thread 6420 

is delayed waiting on a lock. Presumably, one of the other active CLR worker threads in the parent 

process holds the lock that Thread 6420 is waiting for.  

This is one of those “Aha” moments. If you click on the synchronization delay that Thread 6420 is 

experiencing, as illustrated in Figure 9, you can see that the lock that Thread 6420 is trying to acquire is, 

in fact, currently held by Thread 6920, the one that was preempted somewhere in the midst of running 

garbage collection. Clicking on the tab that says “Current Stack” (not illustrated) indicates that the 

duration of the synchronization delay that Thread 6420 suffered in this specific instance of lock 

contention was about 250 milliseconds.  

                                                           
4 One of the ETW OS kernel events that the Concurrency Visualizer does not analyze is the ReadyThread event. The interval 

between a ReadyThread event and a subsequent Context Switch that signals that a ready Thread is being dispatched measures 

CPU queue time delay directly. Using event data, it is possible to measure CPU queuing delays precisely. Analysis of the ETW 

kernel event stream far exceeds anything that can be done using Windows performance counters to try to estimate the impact 

of CPU queuing delays. 

http://msdn.microsoft.com/en-us/library/dd765158(VS.85).aspx
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The scenario here shows one CLR worker thread blocked on a lock that is held by another CLR worker 

thread, which in turn finds itself being delayed due to preemptions from higher priority Interrupt 

processing. We can see that whatever high priority work preempted Thread 6920 has the side effect of 

also delaying Thread 6420, since 6420 was waiting on a lock that Thread 6920 happened to be holding at 

the time. The tool in Figure 9 displays the Unblocking stack from Thread 6920 which shows the original 

memory allocation from the Dictionary.Resize() method call being satisfied, releasing a global GC lock. 

When Thread 6920 resumed execution following its preemption, the GC operation completes, releasing 

the global GC lock. Thread 6920 continues to execute for another 25 microseconds or so, before it is 

preempted because its time slice expired. Even as Thread 6920 blocks, Thread 6420 continues to wait 

while a different CLR thread pool thread (4664) begins to execute instead. Finally, after another 25 

microseconds delay, Thread 6420 resumes execution. For a brief period both 6420 and 4664 execute in 

parallel from approximately the 7640 to 7650 microsecond milestones. (However, they are subject to 

frequent preemptions during that period of overlapped execution.)5 

                                                           
5 Welcome to the indeterminacy associated with parallel programming.  

I won’t take the time here to go into what this little concurrent CLR (Common Language Runtime ) thread pool application is 

doing. Suffice to say that it instantiates and references a very large Dictionary object in .NET, and I wrote it to illustrate some of 

the performance issues developers can face trying to do parallel programming, which is a topic I was blogging about at the 

time. (I should also note that the test program puts the worker threads to sleep periodically to simulate synchronous I/O waits 

to create an execution profile similar to what one could expect in processing a typical ASP.NET web request that needs to 

access an external database, an excellent idea I appropriated from a colleague, Joe Hellerstein.)  

When I first began to profile this test app using the VS Concurrency Visualizer, I was able to see blocking issues like the one 

described here where the CLR introduced synchronization and locking considerations that are otherwise opaque to the 

developer. Well, caveat emptor, I suppose, when it comes to utilizing someone else’s code framework in your application. (See 

Rico Mariani’s Performance Tidbits blog for a singular discussion of his intriguing proposal that a .NET Framework method 

provide a performance signature that would allow a developer to make an informed decision before ever calling into some 3
rd

 

party’s code. Alas, static code analysis cannot be used to predict the performance of some arbitrarily complex method call 

embedded in your application, something Rico was eventually forced to concede.) 

It turns out that .NET Framework collection classes do use locks to ensure thread-safe operation in a multi-threaded program, 

whether it is necessary or not. See the MSDN “Thread-Safe Collections” Help topic for more information. Each worker thread in 

my test program instantiated and accessed a dedicated instance of the Dictionary class during processing, so locking wasn’t 

necessary in this little test application. Because I had taken steps to ensure thread-safety issues would never arise in my test 

program, I was unpleasantly surprised when the tool uncovered lock contention for these Dictionary objects. Unfortunately, 

there is no way for the developer to explicitly signal the runtime that locking is not necessary. Some of the popular .NET 

Framework collection classes – like the HashTable – do provide a Synchronized method that exposes a lock created implicitly. 

But the Synchronized method is designed to support more complex multi-threaded access patterns, such as a multiple readers 

and writers scenario, for example. To assist in parallel programming tasks, several newer collection classes were introduced in 

the System.Collections.Concurrent Namespace that use “lock-free” and optimistic locking approaches that promise better 

scalability for parallel programs. 

I eventually tweaked the test app into an especially ghoulish version I call the LockNestMonster program that uses explicit 

global locks to shine an even brighter light on these issues.  

http://blogs.msdn.com/b/ddperf/archive/2009/03/16/parallel-scalability-isn-t-child-s-play.aspx
http://blogs.msdn.com/b/ricom/
http://blogs.msdn.com/b/ricom/archive/2007/02/07/performance-signatures-cmg-2006-paper.aspx
http://msdn.microsoft.com/en-us/library/dd997305.aspx
http://msdn.microsoft.com/en-us/library/system.collections.hashtable.synchronized(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.collections.hashtable.synchronized(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/system.collections.concurrent.aspx
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FIGURE 9. CLR WORKER THREAD 6420 BLOCKED BECAUSE IT IS WAITING ON A GC LOCK THAT HAPPENS TO BE HELD BY THREAD 6920, 

WHICH IS SUBJECT TO PREEMPTION BY HIGHER PRIORITY SYSTEM ROUTINES. 

Time-slicing.  

The Concurrency Visualizer also utilizes context switch events to calculate the delays a thread 

encounters during execution due to preemption, as a result of the expiration of a thread’s time-slice.6 In 

Figure 10, I clicked on the large yellow block on the right hand side of the execution time bar graph for 

Thread 6920 indicating another long delay. As in Figure 9, I have hidden all but the three active CLR 

thread pool threads. Using a combination of zooming to a point of interest in the event stream and 

filtering out extraneous threads, as illustrated in Figure 10, the Concurrency Visualizer is able to 

construct an execution time profile using just those events that are visible in the current time-window. 

                                                           
6 The duration of the OS Scheduler time slice being one of the few tuning adjustments available in the OS. For the 

record, I normally recommend that system administrators not fiddle with this tuning knob, unless they lots of extra 

time on their hands. This older KB article provides some flavor for what is involved. For someone that cannot resist 

the temptation to fiddle with the time-slicing tuning parameters, the  Concurrency Visualizer Threads View is the 

first Windows performance tool that can help you determine if changing the OS default time-slice value is doing 

your application any good, or harm, for that matter.  

http://support.microsoft.com/kb/111405
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Overall, the three active CLR worker threads are only able to execute 18% of the time, while they are 

delayed by synchronization 9% of the time and subject to preemption 39% of the time. (You can click on 

the Profile Report tab in the middle right portion of the display and see a profile report by thread.)  

 

FIGURE 10. USING THE CONCURRENCY VISUALIZER TO DRILL INTO THREAD PREEMPTION DELAYS. 

At the point indicated by the selection, the time-slice quantum for Thread 6920 expired and the 

Scheduler preempted the executing thread in favor of some other ready thread. Looking at the 

visualization, it should be apparent that the ready thread the Scheduler chose to execute next was 

another CLR thread pool worker thread, namely Thread 4664, which then blocked Thread 6920 from 

continuing. The tool reports that a context switch(6920, 4664) occurred, and that Thread 6920 was 

delayed for about 275 milliseconds before it resumed execution after being preempted. 

As illustrated in this example, the Concurrency Visualizer uses the ETW-based event data from a profiling 

run to construct a state machine that reflects the precise execution state of each application thread over 

the time interval being monitored. It goes considerably beyond calculating processor queue time at the 

thread level. It understands how to weave the sequence of Ready Thread and Context switch events 

together to create this execution time profile. It summarizes the profiling data, calculating the precise 

amount time of time each thread is delayed by synchronous IO, page faults (i.e., involuntary waits due 
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to memory management overhead7), processor contention, preemption by higher priority work, and 

lock contention over the profiling interval. Furthermore, it analyzes the call stacks gathered at each 

Context Switch event, looking for signatures that identify the specific blocking reason. And, specifically, 

to help with lock contention issues, which are otherwise often very difficult to identify, it also identifies 

the thread that ultimately unblocks the thread that was found waiting to acquire a lock.  

Application monitoring using the Scenario instrumentation library. 

Within the discipline of software performance engineering (SPE), application response time monitoring 

refers to the capability of instrumenting application requests, transactions and other vital interaction 

scenarios in order to measure their response times. In addition, performance engineers usually want to 

be able to break down application response time into its component parts, one of which is CPU usage. 

Other than the Concurrency Visualizer that is packaged with the Visual Studio Profiler that was discussed 

above, there are few professional-grade, application response time monitoring and profiling tools that 

exploit the ETW facilities in Windows. As we have seen illustrated, the Concurrency Visualizer 

demonstrates the capability to reconstruct an application’s execution time profile from kernel trace 

events with great precision and detail. An application response time monitoring tool that generates ETW 

response time events that can then be correlated with the Windows OS thread scheduling events has 

potential value in performance investigations of many sorts.  

There is such an application response time monitoring tool for both Windows C++ native and .NET 

applications that is integrated with ETW is called the Scenario class.8 The Scenario instrumentation 

library is a free download available from the MSDN Code Gallery site here.  

The Scenario class is an ETW wrapper built around an extended version of the .NET Stopwatch class. The 

standard .NET Stopwatch class is in the System.Diagnostics Namespace and is used to measure elapsed 

time in a .NET Framework application. The .NET Stopwatch class itself is a managed wrapper around the 

native Windows APIs called QueryPerformanceFrequency and QueryPerformanceCounter (QPC) that 

access a high resolution timer and are used to calculate elapsed time. A straightforward extension of the 

.NET Stopwatch class adds a call to QueryThreadCycleTime (QTCT), a Windows API that provides a 

measure of CPU usage at the thread level, beginning in Window version 6.  

Prior to discussing the use of the application-oriented Scenario instrumentation library, however, we 

should first take a deeper look at the Windows APIs it utilizes, namely QueryPerformanceCounter (QPC), 

QueryPerformanceFrequency, and the newer QueryThreadCycleTime (QTCT). Using the Scenario library 

properly and interpreting the measurement data it produces will benefit from a deeper understanding 

of how these Windows APIs work. 

                                                           
7
 In the Concurrency Visualizer, memory management waits that are resolved very quickly, usually in less than 1 -

second, correspond to soft page faults. When hard pages faults occur, the tool will show a corresponding disk IO, 
and the delay is ordinarily several milliseconds in duration, depending on the speed of the paging disk. 
8
 The name “Scenario” is a nod to the popular practice of scenario-based development, associated primarily with 

Agile software development methodologies. See, for example, Scenario-Based Design of Human-Computer 
Interactions, by John Carroll and User Stories Applied: For Agile Software Development by Mike Cohen. 

http://archive.msdn.microsoft.com/Scenario
http://msdn.microsoft.com/en-us/library/system.diagnostics.stopwatch.aspx
http://msdn.microsoft.com/en-us/library/ms684943(VS.85).aspx
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=4114
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=4114
http://www.amazon.com/User-Stories-Applied-Software-Development/dp/0321205685?SubscriptionId=AKIAJ6DBEGTZAOU5RCTQ&tag=ebookchm05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0321205685#_
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QueryPerformanceCounter. The QueryPerformanceCounter and QueryPerformanceFrequency APIs 

were added to Windows beginning with Windows 2000 when the Performance Monitor developers 

noticed that the granularity of the Windows system clock was inadequate for measuring disk IO 

response time. As discussed in footnote 1, the Windows system’s time of day clock contains time values 

that display precision to 100 nanosecond timer units. However, the current time of day clock value 

maintained by the OS is only updated once per quantum, effectively about once every 15.6 milliseconds 

in current versions of Windows. Using values from the system clock to time disk IOs in early versions of 

Windows NT, the Logical and Physical Disk\Avg Disk sec/Transfer counters in Perfmon often reported 

zero values whenever an IO operation started and ran to completion within a single tick of the system 

clock. 

The solution in Windows 2000 was the addition of the QueryPerformanceCounter (QPC) and 

QueryPerformanceFrequency APIs. In Windows 2000, the QueryPerformanceCounter API returned a 

value from an rdtsc (Read TimeStampCounter) instruction. The TSC is a special hardware performance 

monitoring counter on Intel-compatible processors that is incremented once per processor clock cycle. 

On a processor clocked at 2 GHz, for example, one expects two TSC clock cycle ticks to occur every 

nanosecond.9 Issuing an rdtsc instruction on a processor clocked at 2 GHz returns a clock value 

considerably more precise than standard Windows timer values delineated in 100 nanosecond units. 

Since the processor clock speed is hardware-dependent, an additional API call, 

QueryPerformanceFrequency, was provided to supply the processor clock speed so that the output from 

successive rdtsc instructions could be translated into elapsed wall clock time. 

Once the QueryPerformanceCounter and QueryPerformanceFrequency APIs became generally available 

in Windows, they were rapidly adopted by other applications in need of a more precise timer facility 

than the Windows system clock. However, developers using QPC() soon began to notice discrepancies in 

time measurements taken using the rdtsc instruction due to the way in which the TSC was implemented 

in the hardware. There were two major discrepancies that were encountered using the rdtsc instruction 

on Intel-compatible processors, namely:  

(1) lack of synchronization of the TSC across processors, and  

(2) dynamic changes to the TSC clock update interval as a result of the processor entering a lower 

power state, slowing both the clock rate and the TSC update interval in tandem.  

The effect of these TSC anomalies was quickly evident in the disk driver routine responsible for timing 

the duration of disk operations when running on a multiprocessor, which was especially ironic since QPC 

was originally built in order to measure disk IO operations accurately. It was possible on a multi-

processor for a disk IO that was initiated on CPU 0 and completed on CPU 1 to retrieve a TSC value from 

                                                           
9
 As will be discussed further, elapsed time measurements that are based on successive rdtsc instructions are far 

less precise than the processor’s actual instruction execution cycle time. See, for example, this FAQ from the Intel 
Software Network for an official explanation from the CPU manufacturer. 

http://software.intel.com/en-us/forums/showthread.php?t=54276
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CPU 1 for the IO completion that was before the TSC value retrieved when the IO operation was initiated 

on CPU 0.10  

Of less serious concern, the latency of an rdtsc instruction was considerably larger than expected for a 

hardware instruction, on the order of several hundred clock cycles on older Intel hardware. That, and 

the fact that the rdtsc instruction does not serialize the machine, made QPC() unsuitable for timing, say,  

micro-benchmarks of less than several thousand instructions.  

To deal with the drift in TSC values across multiple processors, in Windows 6 (Vista and Windows Server 

2008), the Windows QueryPerformanceCounter function was changed to use one of several external, 

high resolution timer facilities that are usually available on the machine. These include the High 

Precision Event Timer (HPET), often also referred to as the Multimedia Timer in Windows, and the 

external ACPI Power Management Timer, another high resolution timer facility that is independent of 

the main processor hardware. Because these timer facilities are external to the processors, they are 

capable of supplying uniform values that are consistent across CPUs. (At the same time, 

QueryPerformanceFrequency was also re-written to return the frequency of the external timer source.) 

This change effectively fixed the problems associated with accurate measurements of disk IO response 

time that were evident in Windows 2000 and Windows XP. 

However, using an external timer in the QPC implementation does have one major disadvantage, 

namely latency. If you wrap rdtsc instructions around QPC() calls in Windows Vista, you can typically 

measure latency on the order of 800 nanoseconds to call the QPC API, or roughly 1 -second per call. 

This latency is particularly problematic given how frequently QPC is called. In ETW tracing, for instance, 

QPC is the default timer routine11 that is used to generate the event timestamps. When gathering high 

volume events such as the CSwitch, ReadyThread, ISR and DPC, using QPC for timestamps in ETW 

generates significant overhead. If one is expecting, say, 20,000 ETW events to be generated per second 

per processor on a Vista or Windows Server 2008 machine, calling QPC that frequently adds about 2% 

additional CPU utilization per processor.12 

                                                           
10

 The flavor of some of the difficulties in dealing with rdtsc instructions across multiple CPUs on multiprocessors 
are discussed in this blog entry written by Microsoft SQL Server customer support representatives. 
11

 The clock facility used by default in ETW is QPC. Alternatively, one can specify either the low resolution system 
timer (an option that should only be used in rare instances where the low resolution 15.6 ms clock ticks suffice), or 
that an rdtsc instruction be issued directly. The rdtsc option is termed the “CPU cycle counter” clock resolution 
option. See this ETW documentation entry on the MSDN Library for details.  
12

 ETW is not the only application that routinely relies on QPC-based measurements of elapsed time. When the 
ETW tracing infrastructure is used to gather OS kernel scheduling events, it is probably the most frequent caller of 
the API on the machine. Other frequent callers of QPC include the disk driver routines mentioned earlier that 
measure disk IO response time – reported in Perfmon as the Avg. Disk Secs/Transfer counters – that were re-
written in Windows 200 to use QPC. The TCP protocol, which needs to estimate the Round Trip Time (RTT) of 
packets sent to remote TCP sessions, utilizes QPC for high resolution timing, also. As mentioned earlier, the .NET 
Framework Stopwatch class allows an application to issue calls to QPC and QPF as an alternative to using the low 
resolution DateTime.Now() method that access the Windows system clock. 

http://blogs.msdn.com/b/psssql/archive/2007/08/19/sql-server-2005-rdtsc-truths-and-myths-discussed.aspx
http://msdn.microsoft.com/en-us/library/aa364160(v=VS.85).aspx
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The hardware manufacturers were meanwhile at work making improvements in the TSC hardware to 

allow it to serve as an efficient and accurate elapsed time counter. Changing the behavior of the TSC 

when there was a power state change that adjusted the processor’s clock cycle time was the first fix. 

Newer machines now contain a TSC with a constant tick rate across power management states. (Which 

is what I like to call it, instead of what Intel officially calls an invariant TSC, terminology I find a little 

awkward).13  

The second problem related to the TSC clocks not being synchronized across processors still exists, but 

the TSCs for all the processor cores resident on a single multi-core socket do run off the same underlying 

hardware source, at least. Clock drift across processor cores remains an issue on multi-socket NUMA 

hardware, but built-in NUMA node thread and interrupt affinity in Windows minimizes some of these 

concerns, while not eliminating them completely. Finally, the hardware vendors also report that the 

latency of the rdtsc instruction has improved significantly in current hardware.14 

The long latency associated with accessing an external clock facility combined, with the rdtsc hardware 

improvements described in footnotes 13 and 14, prompted another round of changes in 

QueryPerformanceCounter for Windows 7 (and Windows Server 2008 R2). During system initialization, 

Windows 7 attempts to figure out if the current hardware supports a TSC tick rate that is constant across 

power state changes. When Windows 7 determines that the processor’s TSC tick rate is constant, the 

QPC routine is set to issue rdtsc instructions. If it appears that the TSC is not invariant across processor 

core frequency changes, then QPC will be resolved as in Windows 6 by calling the machine’s external 

timer. In this fashion, QPC in Windows 7 automatically provides a well-behaved, high resolution 

hardware clock timer service that uses the low latency rdtsc instruction whenever it is well-behaved.  

This ability in Windows 7 to resolve the QPC timer service dynamically based on the current hardware is 

the reason Windows application developers are advised to stay away from using rdtsc – unless you 

absolutely know what you are doing – and to use QPC instead. Coding an inline rdtsc instruction is still 

going to be faster than calling QPC to access the TSC, but using rdtsc directly is not for the faint of heart. 

QueryThreadCycleTime. Beginning in Windows 6 (which refers to both Vista and Windows Server 2008), 

there is a new, event-driven mechanism for measuring processor utilization at the thread level. This 

measurement facility relies on the OS Scheduler issuing an rdtsc (Read Time-Stamp Counter) instruction 

                                                           
13

 For details, see the Intel hardware manual entitled Intel® 64 and IA-32 Architectures, Software Developer’s 
Manual, Volume 3A: System Programming Guide, Part 1. Section 16.9 of this manual discusses the Time-Stamp 
Counter on Intel hardware and its processor-dependent behavior. The manual reports, “Constant TSC 

behavior ensures that the duration of each clock tick is uniform and supports the use of the TSC as a wall clock 
timer even if the processor core changes frequency. This is the architectural behavior moving forward.” [Emphasis 
added.] 
14

 Reportedly, the latency of an rdtsc instruction has improved by an order of magnitude on current hardware. 
Unfortunately, the hardware vendors are reluctant to disclose the specific latency of their rdtsc instructions due to 
competitive concerns. The rdtsc instruction still does not serialize the processor instruction execution engine, so 
rdtsc continues to return timer values that are subject to some processor core jitter and imprecision. The need to 
maintain a TSC with a constant tick rate across power state changes also results in some loss of precision in rdtsc 
return values, affecting just one or two of the least significant clock resolution timer bits.  



Measuring processor utilization in Microsoft Windows Page 24 
 

at the beginning and end of each thread execution dispatch. By accumulating these CPU time 

measurements at the thread and process level each time a context switch occurs, the OS can maintain 

an accurate running total of the amount of time on the processor an executing thread consumes. 

Application programs can then access these accumulated CPU time measurements by calling a new API, 

QueryThreadCycleTime() and specifying a Thread Id. 

QueryThreadCycleTime(), or QTCT, provides measurements of CPU time gathered by issuing an rdtsc 

instruction each time a context switch occurs. Using the same mechanism, the OS Scheduler also keeps 

track of processor idle time, which can be retrieved by calling either QueryIdleProcessorCycleTime or 

QueryIdleProcessorCycleTimeEx(), depending on whether multiple processor groups are defined in 

Windows 7. (Overall CPU utilization is calculated from Idle time for any given interval by subtracting Idle 

time from the interval duration: CPU % Busy =  (IntervalDuration – Idle Time) * 100 /  IntervalDuration ) 

While using the rdtsc instruction isn’t quite as straightforward as most measurement people would like, 

the OS Scheduler, at least, handles some of the vagaries automatically. In QTCT, CPU time is kept in units 

of clock ticks, which is model-dependent. If you are running on an older Intel processor that does not 

have a constant tick rate across power management states, it is going to be a very difficult number to 

interpret. That is because on older CPUs, whenever there is a power state change that changes the clock 

frequency, the frequency of the associated Time Stamp Counter (the TSC register) is adjusted in tandem. 

However, the OS Scheduler does not attempt to adjust for this change in the time between clock ticks. 

That means that on one of these machines, it is possible for QTCT() to return accumulated clock ticks for 

an interval in which one or more p-state changes have occurred such that clock ticks of different lengths 

are aggregated together. Obviously, this creates a problem in interpretation, but, of course, only to the 

extent that power management changes are actually occurring during thread execution, and it is a 

problem that only occurs on older hardware.  

Given that set of concerns with an rdtsc-based measurement mechanism, QTCT() remains a major step 

forward in measuring CPU usage in Windows. Instrumenting the OS Scheduler directly to measure 

processor usage is the first step towards replacing the legacy sampling technique. It has all the 

advantages of accuracy and precision that accrue to an event-oriented methodology. Plus, the OS 

Scheduler issuing an rdtsc instruction inline during a context switch is much more efficient than 

generating an ETW event that must be post-processed subsequently, the approach that xperf uses.  

As of Window 7, the OS Scheduler measurements are only exposed through QTCT at the thread level. I 

suspect that the rdtsc anomalies due to the variable rate of the clock on older machines are probably 

one factor holding up wider adoption, while the scope of retrofitting all the services in & around the OS 

that currently rely on the sampling-based processor utilization data is probably another.  

The QTCT API that gives access to these timings at the thread level does have one other serious design 

limitation. QTCT currently returns the number of processor cycles a thread has consumed up until the 

last time a context switch occurred. There is no method that allows a running thread to get an up-to-

date, point-in-time measurement that includes the cycle time accumulated up to the present time. A 

http://msdn.microsoft.com/en-us/library/ms684943(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms684922(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd405507(VS.85).aspx
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serializing and synchronization method along those lines would make QTCT suitable for explicitly 

accounting for CPU usage at a thread level between two phases in the execution of a Windows program.  

Calling QTCT inline is exactly what the Scenario instrumentation library, discussed at the beginning of 

this section, attempts to do, using QPC and QTCT together to gather elapsed and CPU times between 

two explicit application-designated code markers. The thread-level CPU times that the Scenario 

instrumentation library returns are subject to this current limitation in QTCT. With that background in 

hand, we can now take a look at the Scenario class itself.  

Using the Scenario instrumentation library. The Scenario class wraps calls to an internal 

ExtendedStopwatch object that returns both the elapsed time and CPU time of a demarcated 

application scenario. Once a Scenario object is instantiated by an application, calls to Scenario.Begin() 

and Scenario.End() are used to mark the beginning and end of a specific application scenario. After the 

Scenario.End() method executes, the program can access the object’s Elapsed and ElapsedCpu time 

properties. In addition, the Scenario.Begin() and Scenario.End() methods generate ETW events that can 

be post-processed. The payload of the ETW trace event that is issued by the Scenario.End() method 

reports the elapsed time and CPU time measurements that are generated internally by the class.  

To support more elaborate application response time monitoring scenarios, there is a Scenario.Step 

method that provides intermediate CPU and wall clock timings. The Scenario class also provides a 

correlation ID for use in grouping logically related requests. Nested parent-child relationships among 

scenarios that are part of larger scenarios are also explicitly supported. For details, see the API and ETW 

payload documentation pages on MSDN Code Gallery. 

In summary, the Scenario instrumentation class library provides a convenient way for a developer to 

indicate in the application the beginning and end of a particular usage scenario. Internally, the Scenario 

instance uses an ExtendedStopwatch() object to gather both wall clock time (using 

QueryPerformanceCounter) and the CPU ticks from QTCT() for the Scenario when it executes. The 

Scenario class can then output these measurements in an ETW trace record that records for posterity 

the elapsed time and CPU time of the designated block of code. Another way to think about the 

Scenario instrumentation library is that it supports a simple, common measurement pattern, using 

events to delineate the beginning and end of a sequence. The pattern is similar to the Open Source 

Application Response Measurement (ARM) standard, but adapted specifically to the Windows diagnostic 

environment and tailored for the .NET Framework developer.  

There is even a capability in the Concurrency Visualizer in the Visual Studio profiling tools to integrate 

application-oriented Scenario measurements. Hazim Shafi's MSDN article on the Concurrency Visualizer  

cited earlier illustrates using this facility. In his article, Dr. Shafi describes the Scenario markers as a way 

to link the visualization of thread execution progress that the Concurrency Visualizer provides to specific 

phases of the application being profiled. Separately, Shafi discusses specific usage scenarios for the 

Scenario class in a blog entry here. 

Experience with the Scenario instrumentation library, which embeds calls to QTCT() in your application, 

confirms that QTCT is not a wholly satisfactory solution for obtaining the CPU time of a micro-

http://archive.msdn.microsoft.com/Scenario/Wiki/View.aspx?title=API&referringTitle=Home
http://archive.msdn.microsoft.com/Scenario/Wiki/View.aspx?title=ETW%20Format&referringTitle=Home
http://archive.msdn.microsoft.com/Scenario/Wiki/View.aspx?title=ETW%20Format&referringTitle=Home
http://msdn.microsoft.com/en-us/library/ms644904(VS.85).aspx
http://msdn.microsoft.com/en-us/magazine/ee336027.aspx
http://blogs.msdn.com/hshafi/archive/2009/11/13/concurrency-visualizer-linking-visualizations-to-application-phases.aspx
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benchmark. The one serious limitation is that QTCT returns the CPU cycle count from the most recent 

thread context switch. QTCT works just fine if you specify a thread id that is currently blocked, but when 

you call QTCT inline the way the Scenario class does, you get the situation illustrated in Figure 11.  

CSwitcht0(oldTid,thisTid) CSwitcht1(thisTid,newTid)

QTCTt0 () QTCTt1 ()

 

FIGURE 11. QTCT RETURNS THE CPU CYCLE COUNT FROM THE MOST RECENT THREAD CONTEXT SWITCH. WHEN CALLING 

QUERYTHREADCYCLETIME INLINE FOR THE THREAD YOU WANT TO GATHER THE CYCLE TIME MEASUREMENTS FOR LEADS TO DISCREPANCY 

WHEN THE GAP BETWEEN THE LAST CONTEXT SWITCH AND THE INLINE CALL TO QTCT IS LARGE. TO FIX THIS, QTCT SHOULD 

SYNCHRONIZE ITS MEASUREMENT WHEN THE CALLING THREAD IS REQUESTING CYCLE TIME DATA FOR ITSELF. 

Here, the value of QTCT returned at t0 reflects the most recent context switch that occurred. If the last 

context switch happens to occur long before the block of code you want to measure begins to execute, 

then the amount of CPU time reported by successive calls to QTCT at the scenario Begin and End 

includes the CPU time accumulated prior to the Scenario.Begin method call. For inline measurements, 

there needs to be a way to measure CPU cycles just for the duration of the time between QTCTt0 and 

QTCTt1, shaded in blue in the drawing. 

This happens to be a scenario that can be seen quite clearly in the VS Concurrency Visualizer, which also 

suggests a straightforward extension to QTCT that would address the problem. To address this 

limitation, QTCT needs an option to call the OS Scheduler to update the CPU cycle time inline or to 

synchronize automatically its cycle time accumulator upon recognizing that the caller is requesting CPU 

time data on itself. This option would then issue an rdtsc instruction inline, driving the same CPU clock 

cycles consumed update mechanism used when the thread context switches out. This would allow the 

calling thread to access its current cycle time synchronized to the current point in time.  

Comparing Processor Utilization measurements from different sources 

Given the use of different CPU measurement techniques in Windows, it is instructive to compare them 

head-to-head and take their measure. We need not look much further than the Visual Studio 2010 

Profiler to compare and contrast the sampling and the event-driven measurement techniques described 

here in order to understand their trade-offs, primarily with regard to accuracy and efficiency.  

The VS Profiler currently provides three different views of an application’s processor consumption that 

we can compare. Most prominently, the Profiler calculates CPU usage by the application being profiled 

using sampling of the processor execution state, the type of profiling that is most frequently used. 

Meanwhile, the new Rules engine in the Visual Studio 2010 Profiler conveniently gathers the Windows 

Process\% Processor Utilization performance counter for the process being profiled for the duration of a 

profiling run. Finally, as described earlier, the Concurrency Visualizer calculates CPU consumption of the 

http://msdn.microsoft.com/en-us/library/dd264894.aspx
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process being profiled from the ETW context switch events. First, let’s see how the event-oriented 

approach adopted in the Concurrency Visualizer compares to the other, more familiar process level 

measures of CPU usage that Windows performance counters provide. 

Windows performance counters. The data gathered by the Rules engine is the familiar Windows 

performance counter called Process(n)\% Processor Time, where n is the name of the process being 

profiled. This and every other Windows counter analyzed by the Rules engine is gathered by the Profiler 

Rules engine every 500 milliseconds, by default.15 Comparing the Windows performance counter 

measurements to the values calculated by the Concurrency Visualizer from the ETW stream, you will 

typically notice some discrepancies. The Windows performance counter data is subject to sampling 

error, which is especially apparent over smaller interval measurement intervals. If you narrow the 

collection interval even further, gathering performance counters every 100 milliseconds, for example, 

anomalies due to the discrete nature of the sampling mechanism the CPU performance counters rely on 

become even more evident.  

Figure 12 is a screen shot of the Concurrency Profile’s CPU Utilization report. This is the easiest way to 

compare Windows performance counters (gathered by the Rules engine) to the event-oriented 

approach that relies on the sequence of ETW CSwitch events. The Concurrency Profile’s CPU Utilization 

report is primarily designed to help orient you to the sequence of events associated with the process 

being profiled, especially if you believe that process is – or should be – CPU bound. It is a histogram 

showing CPU utilization over time for the specific process being profiled as a stacked area chart. It also 

shows the impact of processor utilization by other active processes, as well as the system process (just 

in case). What remains is the Idle process, essentially a bookkeeping mechanism that allows the OS to 

measure CPU busy.16  

                                                           
15

 As noted earlier, the smallest data collection interval that Windows Performance Monitor application, Perfmon, 
supports is once every second. This limitation recognizes the data anomalies that can affect the % Processor Time 
measurements, generally the most frequently used measurement among all the performance counter values 
available, due to small sample sizes. The % Processor Time measurements reflect samples of the processor’s 
execution state taken roughly 64 times each second. An application like the Visual Studio Profiler calls the 
performance monitoring interfaces directly using the Performance Data Helper library. (See the Performance Data 
Helper library documentation for details. Also, see this example that documents using the PDH library functions, to 
gather one of the % Processor Time counters.) The collection interval that the VS Profiler uses by default is 500 
milliseconds, but you can specify any value in milliseconds for the collection interval using the Profiler’s Windows 
Counter Property Page. 
16

 When a thread completes its execution cycle and the OS Scheduler see no other threads in the system in the 
Ready state, Windows “dispatches” the Idle thread, actually a hardware-dependent routine that executes when 
there is no other real work to do.  
Out of a reluctance to suspend the processor entirely using the hardware’s HALT instruction, something 
considered too expensive to do routinely, the Idle thread was initially a branch to a series of No Op instructions 
executing in a continuous loop. Power management considerations make that expediency very inefficient on 
today’s machines, and Windows has evolved more a conscientious approach to idling the processor, gradually 
quiescing its power consumption using a power management module that is hardware-dependent. 

http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa373083(v=VS.85).aspx
http://support.microsoft.com/kb/287158
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FIGURE 12. A SCREEN SHOT OF THE CONCURRENCY VISUALIZER’S CPU UTILIZATION REPORT, ALSO SHOWING OUTPUT FROM THE 

PROFILER RULES ENGINE THAT GATHERS THE PROCESS(N)\% PROCESSOR UTILIZATION WINDOWS PERFORMANCE COUNTER. THE 

CONCURRENCY PROFILE REPORTS THAT THE AVERAGE CPU UTILIZATION FOR THE PROCESS BEING PROFILED IS 24%. BASED ON 

WINDOWS PERFORMANCE COUNTERS, HOWEVER, THE PROCESS WAS REPORTED AS 43.5% BUSY OVERALL. 

The Concurrency Profile’s CPU Utilization report is a visualization of the event-oriented state machine 

associated with thread scheduling, this time from the point of view of the processor itself. At any point 

in time, each available processor is in one of four possible states: Idle, executing a thread from the 

specific process being profiled, executing a thread from some other process, or executing a system 

thread.  

Visible at the bottom of the screen shot is output from the Profiler Rules engine, two Information-level 

messages that report the average and maximum CPU utilization of the specific process being profiled, 
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based on the Process\% Processor Time performance counter. Reconstructing the processor scheduling 

state machine from ETW CSwitch events, the Concurrency profile reports the average CPU Utilization for 

the process being profiled was 24%. By comparison, using the Windows performance counters gathered 

over the same execution interval, the process was reported to be 43.5% busy. On the face of it, that is a 

significant difference. One minor source of discrepancy is the difficulty reconciling the boundaries of the 

measurement interval using the two different measurement techniques. But that is probably too big a 

difference, as we will see, to be due to boundary conditions not lining up exactly.  

You will also notice a serious data anomaly in the counter data reported by the Rules engine in Figure 12 

– the maximum CPU utilization recorded for the process was an interval where the raw Process(n)\% 

Processor Utilization performance counter reported 250%, a physical impossibility on this two-way 

machine. This discrepancy is worth drilling into. 

If you click on the Rules engine message, you will navigate to the Profiler’s Marks report, which shows 

the values of the individual performance counters gathered each interval during execution of the 

process being profiled. I created Figure 13 by copying the raw processor utilization counter data from 

PDH in the Marks view into an Excel spreadsheet and generating a line chart. (Technically, it is an x-y 

scatter plot, where the x-axis shows time, the y-axis shows processor utilization, and an Excel spline 

function is used to connect the dots.) The raw Process(n)\% Processor Utilization performance counter 

values are shown as a red dotted line. There are evidently two measurement intervals where the value 

of the performance counter exceeded 200%. This, of course, is a physical impossibility on a two-way 

machine, an inconsistency that a knowledgeable performance counter reporting program like Perfmon 

will normally smooth over. That is certainly large factor in the discrepancy.  

Figure 13 also shows the _Total instance of the Processor object for comparison. The _Total instance of 

the Processor object, calculated as the inverse of the “utilization” reported by the Idle thread, is 

effectively purged of the measurement anomalies in the counter data reported at the individual process 

level. It appears that PDH itself takes care of capping the _Total instance of the Processor\% Processor 

Time counter value to ensure that it does not exceed 100% per processor for any reporting interval. 
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FIGURE 12. PROCESS UTILIZATION AS REPORTED BY WINDOWS PERFORMANCE COUNTERS OVER THE SAME EXECUTION TIME INTERVAL 

THAT WAS SHOWN IN THE CONCURRENCY VISUALIZER’S CPU UTILIZATION REPORT. 

The first observation to be made about the raw Windows performance counter data measurements of 

processor utilization is that the very small number of samples gathered each collection interval 

introduces irregularities in the data. Using the Profiler’s default 500 millisecond collection interval, the 

process level % Processor Time counter values are calibrated on only about 30 samples on the processor 

execution per interval. 

Examining a typical thread’s execution path, as reconstructed by the Concurrency Visualizer from the 

event trace, yields some additional insight. What is apparent on modern processors is how small the 

duration of most thread execution time intervals are – application threads frequently execute 

continuously for 1 millisecond or less – although, of course, your mileage may vary. Sampling processor 

execution state 64 times per second as the OS Scheduler does may be too coarse a way to capture these 

fine-grained thread state transitions. 

Another possible explanation that I didn’t personally investigate here is that the ETW logger the 

Concurrency Profiler uses could not keep up with the event stream, effectively like turning on a fire 

hose, causing some of the CSwitch events to be dropped. On this test machine, I have seen the rate of 
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context switches exceed 20,000 per CPU, so it wouldn’t be all that surprising if the disk logging function 

didn’t quite keep up with the pace.17  

Those of us that drill into detailed performance measurements for a living are accustomed to dealing 

with some uncertainty and imprecision in our measurements. So, ignoring this measurement anomaly 

for the moment, we can satisfy ourselves that the overall shape of the distribution of the raw 

Process(n)\% Processor Utilization performance counter values plotted over time is consistent with the 

Concurrency Profiler’s reconstruction of the thread context switch event data. We are evidently 

measuring the same phenomenon, a consistency that is somewhat comforting.  

Sampling processor execution state. A second comparison to be made is between the sample data 

gathered by the Visual Studio Sampling profiler and the Windows performance counters, which are also 

based on sampling. A Visual Studio Sampling profile gathers call stacks on a system-wide basis every 10 

million instruction cycles, by default. (This collection interval is also adjustable.) On a 2 GHz processor, 

for example, this means you can expect the profiler to gather about 200 call stack samples each second, 

or about one every 5 milliseconds. For comparison, this is about three times the sampling rate used by 

the OS to gather and maintain the Windows performance counter values. The Visual Studio Sampling 

profiler only analyzes call stacks that reference the specific process profiled – all other call stacks are 

discarded during its Analysis phase. Analysis of the Visual Studio Sampling profiler call stack data can 

also suffer if too few samples for process under consideration are gathered. The Performance Rules 

engine generates a Warning message  

Gathering call stacks, of course, allows the Visual Studio Sampling profiler to attribute CPU consumption 

to specific Modules and their Methods running inside the application. By design, the Sampling profile 

aggregates all the sampled call stacks accumulated during the profiling run. This is because it is 

concerned with identifying where in your process CPU time is being consumed, not how much processor 

time your process is consuming overall. (If you have chosen a Sampling profile to begin with, the 

working assumption is that the process is using excessive amounts of CPU time since call stack sampling 

is the profiling technique that allows you to investigate CPU usage most effectively.) In performing this 

call stack aggregation, however, what is lost is a sense of the sequence of the processor utilization 

events. This is only a serious limitation when the sequence matters, of course. 

 

                                                           
17

 The Concurrency Visualizer produces a Warning message under these circumstances that displays in the VS 
Output window and is easily missed: “Warning: your trace missed user mode events, most likely due to excessive 
context switches or I/O.” I might have missed it in this instance, but I don’t think so. 
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FIGURE 14. A SUMMARY PROFILER SAMPLING REPORT FOR THE SAME PROCESS. 

Figure 14 shows a Summary Profiler report for a different run of the same test process. (A separate run 

is required because the Visual Studio Profiler, by design, can only gather one type of profiling data at a 

time.) I made the profiling run on a dual-processor machine running at 2.2 GHz. Taking one call stack 

sample every 10 million clocks, the profiler gathers about 220 call stack samples every second. The 

process being profiled executed for about 15 seconds, for a total of approximately 220 * 15 samples, 

3300 samples per CPU. The report indicates that 3,888 of those sample call stacks originated in the 

process being profiled. We estimate the CPU utilization as 3,888 / 3300, or about 118%. The raw 

Process(n)\% Processor Utilization performance counter, gathered and reported by the Rules engine, 

reports the process was 112% busy over the same interval. These two measurements are roughly 

comparable, which should not be too surprising since they both use a similar sampling methodology. 

(Note that the raw Process(n)\% Processor Utilization performance counter continues to report intervals 

where process utilization measurements exceeded 200%, so the anomaly we saw before isn’t an 

isolated incident.) 

So there you have three basic ways to measure processor utilization by a process and its threads: (1) 

using familiar Windows performance counters, (2) a sampling Profile, and (3) by aggregating context 

switch event data. Overall, all three collection methods provide roughly similar results, assuming there is 
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enough time to accumulate a sufficient number of samples. The event-oriented technique should 

provide the most accurate measurements, but the very idea that the Windows event stream is so fast 

and thick that disk logging may not be able to keep pace warrants some consideration.  

When the accuracy of the data is the prime concern, the event-oriented approach is definitely preferred. 

However, sampling techniques have advantages, too, especially with regard to overhead. As I 

mentioned, on the machine where I made these profiling runs, I can observe context switch events 

occurring at rates in excess of 20,000 context switches per CPU per second. Consequently, the overhead 

of gathering CPU busy measurements by processing context switch events varies as a function of the 

rate at which context switch events occur. With sampling, the overhead is constant, independent of 

whatever else may be active on the machine at the time. Over time, the accuracy of sample-based 

measurements also improves as more and more samples are accumulated. If you need to measure the 

CPU impact of micro-benchmarks, the sampling-based data on CPU usage are subject to significant 

error. Over very small measurement intervals, for example, scenarios that execute for 500 milliseconds 

or less, the event-oriented approach is the only way to ensure accurate measurement results. 

Longer term, we see the beginning of a switch to a more accurate, event-oriented approach using 

instrumentation built into the OS Scheduler. Several new performance tools, including the Resource 

Manager, the Concurrency Visualizer, and the ETW-based Windows Performance Tools, are currently 

available that exploit the newer event-oriented measurements. Legacy tools like the Performance 

Monitor Processor counters and the Task Manager real-time displays, however, continue to support the 

legacy sampling mechanism in Windows 7. 

To conclude this section, I should mention my view that some of the concern over the accuracy of the 

processor utilization measurements is misplaced. Measurements we are able take of processor activity 

at an OS level from the outside looking in obscure much of what is actually happening at the hardware 

level. Relying exclusively on OS software measurements of CPU time consumed by running processes 

and threads misses aspects of the processor hardware that are crucial to performance. For example, 

hyper-threading, NUMA effects, and virtualization all impact thread execution time, but these impacts 

cannot be understood without access to hardware internals. There are very serious performance issues 

that a naïve reliance on measurements of CPU elapsed time ignores. As a case in point, we will look 

briefly at the measurement impact of running Windows as a guest machine on a VMware virtualization 

Host. 

Measuring CPU usage on Windows virtual machine guests 

Given the widespread use of virtualization technology today, it is appropriate to ask about the impact 

virtualization has on the measurement of CPU utilization when Windows is running as a guest virtual 

machine. Without attempting to catalog all the ways in which virtualization influences the measurement 

data, suffice to say, virtualization has a major impact on performance monitoring of Windows guest 

machines. While the discussion here will focus on the narrow issue of measuring CPU utilization, we will 

also touch upon some of the more general measurement issues that arise under virtualization.  
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To acquire a full and accurate accounting of what is happening to the CPUs in the virtualization 

environment, it is necessary to pull together both the internal measurements from the guest machines 

and the VM Host measurements. The pervasive effects virtualization introduces into the measurement 

data gathered from within the virtual machine guest requires us to also consider external measurements 

of processor utilization taken by the VM Host. Fortunately, with the VMHost measurements in hand, it is 

possible to make sense of the internal measurements.18 The external measurement data provides a 

perspective on CPU usage that is quite limited, however. The virtualization host cannot see inside its 

guest machines or understand the workloads they are running. We provide an example of using internal 

and external CPU usage measurements in the case study that follows. 

From a resource management standpoint, virtualization implies sharing. Virtualizing some resource like 

the CPU provides the means of sharing it among guest machines. This sharing allows for fuller and more 

effective utilization of the resource, but potentially leads to contention. Under virtualization, any 

virtualized resource – which includes processors, RAM, disks, and network interface cards (NICs) – can 

potentially overload the physical resource that is backing the virtual request. Contention for physical 

processors, for example, will overload those processors, which then causes delays in scheduling the 

virtual machine guests for execution. Identifying the nature and extent of these scheduling delays is of 

fundamental importance whenever you are dealing with performance problems affecting one or more 

of the guest machines that are sharing some VM Host.  

Queuing for virtual processors. Contention for virtual processors leads to queuing delays. To quantify 

the delays associated with queuing for virtual processors, it is necessary to look at external measures of 

processor busy and processor queuing gathered by the VM Host. Fortunately, the VMware Host system 

that is responsible for scheduling guest machines for execution is also capable of measuring processor 

usage by guest machines very accurately. When there is contention for physical processors, the VMHost 

measures that as well. The VMware measure that is most important to understanding the extent to 

which processor contention is occurring is known as Ready Time. Ready Time in VMware is the amount 

of time a virtual machine that has requested service and is ready to run is delayed in the VMware Host 

scheduler queue waiting to be scheduled for execution. It is analogous to processor queue time. 19 

Unfortunately, CPU usage measurements gathered from inside the guest OS are not so precise. The 

fundamental measurement issue affecting internal measurements is that guest machine requests to 

read the hardware clock and set hardware-based timer interrupts are virtualized. Since running as a 

virtual machine is transparent to the guest OS – with some exceptions, as discussed later, 

measurements taken from inside the virtual machine guest are unaware of any delays introduced due to 

resource sharing. Consequently, measurements taken from inside the guest machine cannot reliably 

quantify queuing delays associated with queuing for virtual processors.  

                                                           
18

 Note that in the discussion that follows, the examples are drawn specifically from running Windows guest 
machines on VMware. Each of the other popular virtualization products does have related performance 
monitoring concerns, however. 
19

 See the VMware white paper, “Ready Time Observations,” available at 
http://www.vmware.com/pdf/esx3_ready_time.pdf, for details. 

http://www.vmware.com/pdf/esx3_ready_time.pdf
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However, it is sometimes possible that secondary measures do provide evidence that contention-

induced virtualization delays are occurring. For example, the System\Processor Queue Length 

performance counter in Windows, which is sampled as discussed earlier, sometimes provide evidence 

that contention for virtual processors is delaying execution of key tasks. From an internal perspective, 

elongation of the processor queue can result when executing threads become backed up. Timely 

processing of interrupts, especially timer interrupts are also prone to becoming backed up when the 

virtual machine is blocked from executing. Because of the way the System\Processor Queue Length 

performance counter in Windows is calculated using sampling, it is not, however, a very robust indicator 

of processor contention in a virtualization environment. 

A service level-oriented measurement of application response time remains the best overall indication 

that there is a performance problem – with or without virtualization. The accuracy of internal 

measurements of application response time is affected by the virtualization environment, which 

virtualizes all the clock and timer services that the guest machine uses. Measurements of application 

response time that are gathered externally, such as the response time of web service calls made using 

instrumentation embedded in the web browser client-side Javascript code during execution, remain 

very accurate. Since it does not have visibility inside the guest machine, the VMware Host software does 

not have access to service level-oriented response time measurements for any applications running on 

the guest. One of the limitations of current VM Host scheduling schemes that attempt dynamic load-

balancing in response to resource contention is that they are based solely on resource utilization metrics 

and do not take application response time into consideration. In the case study discussed below, we 

review measurements of both resource utilization and application response time. 

Virtualized clocks. VMware virtualizes all calls made from the guest OS to hardware-based clock and 

timer services on the VMware Host. For the Windows OS, these include (a) the periodic clock interrupt 

that Windows relies upon to maintain the System Time of Day clock, (b) calls to the HPET, and (c) the 

rdtsc instruction itself.20 You will recall from an earlier discussion that the QueryPerformanceCounter 

function that is used in performance monitoring to generate granular measurements of elapsed time 

uses the hardware rdtsc instruction in Windows 7, but reverts to the HPET external timer whenever 

rdtsc cannot be trusted. In VMware, virtualization influences all three time sources that Windows 

depends upon in performance measurement. From inside the Windows guest machine, there is no clock 

or timer service that is consistently reliable. 

The fact that virtualization impacts external, hardware-based clock and timer services is unsurprising. 

Whenever the guest machine accesses an external hardware timer or clock, that access is virtualized like 

any other access to an external device. Any external device IO request is intercepted by the VM Host 

software, which then redirects the request to the actual hardware device. If the target device happens 

to be busy servicing another request originating from a different virtual machine, the VM Host software 

must queue the request. When the actual hardware device completes its processing of the request, 

                                                           
20

 See a VMware white paper entitled, “Timekeeping in VMware Virtual Machines,” which has an extended discussion 
of the clock and timer distortions that occur in Windows guest machines when there are virtual machine 
scheduling delays.  

http://www.vmware.com/pdf/vmware_timekeeping.pdf
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there is an additional processing delay associated with the VM Host routing the result to the guest 

machine that originated the request. In the case of a synchronous HPET timer request, this interception 

and routing overhead leads to some amount of “jitter” in interpreting the clock values that are retrieved 

that is not otherwise present when Windows is running in a native mode. 

An asynchronous timer request of the type Windows uses to maintain the System Time of Day clock is 

subject to an additional delay between the time that the VMware Host software services the original 

device interrupt and the time that the virtualized device interrupt is presented to the guest machine. An 

additional consideration is at that the specific point in time when the periodic clock interval the OS 

Scheduler relies upon is scheduled to expire, the guest machine might be delayed in the VMware Host 

scheduler (where it is accumulating Ready time). In VMware, even timings based on the lightweight 

rdtsc instruction issued from guest machines are subject to virtualization delays, despite that fact that 

an rdtsc instruction can normally be issued by a program executing at any protection level. The VMware 

Host OS traps all rdtsc instructions and returns virtualized timer values. 

With this background and understanding of how virtualization perturbs all manner of Windows clocks 

and timer services, let’s look specifically at how having undependable clocks affects the accuracy of 

Windows performance measurements. Virtualization affects the clock interrupts that the Windows 

Scheduler relies on to maintain its System Time of Day clock and perform CPU accounting the most. 

Servicing interrupts of any type are subject to scheduling delays when Windows is running as a virtual 

machine guest under VMware. As noted above, the potential for clock interrupts to be deferred impacts 

the CPU accounting function that is performed by the OS Scheduler. The interval between successive 

clock interrupt is no longer uniform. When the CPU accounting interface in Windows converts samples 

into % Processor Time, having non-uniform measurement intervals distorts this calculation.  

Moreover, it is possible for VMware guest machine scheduling delays to grow large enough to cause 

some periodic timer interrupts to be dropped entirely. In VMware terminology, these are known as lost 

ticks, another tell-tale sign of contention for physical processors. In extreme cases where the backlog of 

timer interrupts ever exceeds 60 seconds, VMware attempts a radical re-synchronization of the time of 

day clock in the guest machine, zeros out its backlog of timer interrupts, and starts over. 

In theory, at least, one should be able to adjust most performance measurements taken internally by 

the virtual machine guest OS based on how much Ready delay the guest machine encounters. In 

practice, this measurement reconciliation, however, is significantly complicated by the fact that clock 

and timer services of all types are virtualized in VMware. When a Windows guest machine is suffering 

from Ready Time delays, these scheduling delays tend to distort the clock and timer facilities that are 

used in Windows performance monitoring. Ironically, it is precisely when these internal OS 

measurements of processor utilization are most valuable that internal measurements are apt to be the 

least reliable. 

Aware that the clocks and timers used by Windows for performance monitoring are distorted when 

there is contention for physical processors, VMware’s timer virtualization facilities attempts to smooth 

out the distortion caused by VMware scheduling delays. VMware’s virtualized timer services attempt to 
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deliver a consistent stream of apparent time to the guest machine, smoothing out the major distortions 

created by non-uniform timer intervals. The impact of VMware apparent time on performance 

measurements taken from inside a Windows guest machine is not well understood, as of this writing. It 

is safe to safe that this is area that badly needs investigation. 

VMware’s use of apparent time is designed to smooth out of the some of the obvious distortions that 

clock and timer-based measurements are subject to on Windows guest machines. Apparent time helps 

with all manner of Windows performance counters that are based on simple counting of events, 

including, for example, Pages/sec, Disk transfer/sec, TCP segments/sec, etc. These are all performance 

counters whose values are derived in the performance monitoring software by calculating an interval 

delta, and then dividing by the interval duration to create a rate, i.e., events/second. In making that 

events/second calculation, the numerator – the number of these events that were observed during the 

interval – remains a valid count field. What is not reliable under VMware, however, is the interval 

duration, something which is derived from two successive calls to virtualized timer services that may or 

may not be delayed significantly. There should be no doubt that the events that were counted during 

the measurement interval actually occurred. What is suspect is the calculation of the rate that those 

events occurred that is performed by Perfmon and other performance monitoring applications.21 

Clock distortion that impacts the CPU usage metrics is arguably more serious. The CPU time accounting 

function of the OS Scheduler assumes that the quantum between any two successive periodic clock 

interrupts is uniform. Under VMware, this is not a valid assumption.22 At the very least, managing a 

VMware server farm requires access to the measurements the VMHost scheduler gathers on Host and 

Guest CPU utilization and Guest Ready time. 

Unfortunately, due to the clock distortions that can occur, none of the event-oriented measurement 

techniques discussed earlier yield reliable measurement results under VMware either. As a final note of 

caution on the subject, consider the use of the rdtsc instruction to calculate the elapsed time between 

two events, for example, the instrumented OS Scheduler that issues an rdtsc instruction on a context 

switch that transitions a thread into the running state and a later context switch when the running 

thread blocks. According to VMware, 

                                                           
21

 Performance counter rate/second values are automatically calculated by the PDH library functions described in 
an earlier footnote, based on the counter type definition. 
22

 In theory, one ought to be able to correct for these distortions in the uniform time fabric from inside an 
“enlightened” guest machine. Whenever Microsoft adds a feature to the Windows OS to make it perform better 
when running as a Hyper-V guest machine, it uses the terminology “enlightened” to describe that OS feature.  

For example, the TCP/IP networking driver stack in Windows 7 is enlightened when Windows is running as a Hyper-
V guest machine. Running as a Hyper-V guest machine, the TCP/IP stack can avoid performing many of the time-
consuming consistency checks that the enlightened driver knows were already performed on the packet by the 
Hyper-V Host machine for the physical NIC. To date, there is no “enlightened” performance monitoring facilities of 
the guest OS, but similar to VMware ESX, Hyper-V provides a rich set performance monitoring counters of its own. 
VMware, for obvious reasons, cannot rely on the Windows OS ever being enlightened about running as an ESX 
guest. But VMware provides a number of Windows facilities and tools that are VMware-aware, such as a driver for 
its virtual NICs that contains a similarly abbreviated TCP/IP networking stack. 
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Current VMware products virtualize the TSC in apparent time. The virtual TSC stays in step with the 

other timer devices visible in the virtual machine. Like those devices, the virtual TSC falls behind real 

time when there is a backlog of timer interrupts, and catches up as the backlog is cleared. The virtual 

TSC does not count cycles of code run on the virtual CPU; it advances even when the virtual CPU is not 

running. [Emphasis added.]
23

 

Between the time that the 1st context switch occurred and the thread was dispatched on the guest 

machine and the 2nd context switch occurred when the thread blocked, the guest machine itself is 

subject to being blocked by the VMware Host scheduler. The OS Scheduler performing its 

QueryThreadCycleTime CPU time accounting function is not aware that the guest machine itself was 

blocked. The OS Scheduler naively assumes that the thread was running continuously all the time that 

elapsed between its two successive rdtsc instructions.  

In summary, virtualization has the potential to distort significantly both the legacy sampling based 

measurements of processor utilization and the newer event-oriented measurement techniques. The 

underlying cause of these distortions to the measurements is that clock interrupts and other timer 

services are subject to VM Host scheduling delays whenever there is contention for physical processors. 

In theory, it should be possible to correct for these perturbations in the guest machine CPU time 

measurements using the VMware Host measurements of guest machine Ready Time. In practice, the 

ability to reconcile the CPU usage metrics across VMware Hosts and their Windows guest machines has 

not yet been thoroughly explored. 

Case study. To see how guest machine performance monitoring is impacted when the VMware Host 

machine is overloaded, we set up a test environment with a 2-way multiprocessor running ESX Server 

version 5. We then defined 4 Windows Server guest machines, 2 with 2 virtual processors assigned, and 

2 guest machines with single processors. With 4 machines and 6 virtual CPUs defined, running our CPU 

soaker program concurrently on each guest machine overloaded the VMware host machine. Figure 15 

shows the utilization of the VMware guest machines defined, based on the external measurements 

gathered by the VMware Host software. An overlay, a dotted line plotted against the right hand chart y-

axis, shows the VMware Host CPUs running at near 100% utilization for the duration of the test, which 

ran for three hours. 

The chart in Figure 15 shows that one of the two-way Windows guest machines, R1-2008, accounts for 

about 70% utilization of one physical CPU. Another two-way Windows guest, SE-2008-32, accounts for 

about 40-50% utilization. Two additional Windows guest machines, defined to run only a single 

processor, are also shown, executing concurrently during the interval. The VM Host software evidently 

consumes the remaining CPU cycles that are accounted for, approximately 20-30% of one physical CPU.  

 

                                                           
23

 “Timekeeping in VMware Virtual Machines,” a VMware white paper, cited in an earlier footnote. 

http://www.vmware.com/pdf/vmware_timekeeping.pdf
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FIGURE 15. CPU USAGE OF 4 GUEST MACHINES RUNNING A VMWARE ESX HOST ON A 2-WAY MULTIPROCESSOR DURING A THREE-

HOUR BENCHMARK RUN. THE UTILIZATION OF THE FOUR TEST WINDOWS GUEST MACHINES THAT ARE RUNNING IS SHOWN.  

 

The aim of the test was to induce sufficient Ready Time in the guest Windows machines so that we 

could evaluate the internal performance measurement of CPU utilization under the worst possible 

conditions. Figure 16 illustrates the amount of wait time accumulated by each of the guest machines 

due to contention for the physical processors. With each of the guest machines running CPU soaker 

jobs, the physical CPUs that VMware is managing are overloaded. This leads to long delays as guest 

machines accumulate the Ready Time that is illustrated. 

Each data collection interval graphed in Figure 16 corresponds to 20 seconds of elapsed time of the test 

run. Because the physical CPUs are overloaded, the guest machines can accumulate as much as 50 

seconds of Ready Time during a 20-second execution interval. Note that the 2-way virtual machines 

accumulate far more Ready Time than the 0ne-CPU guests. Before dispatching an n-way virtual machine, 

the VMware Host scheduler waits until n processors are free. This is to ensure that workloads executing 
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inside the guest machine never experience an anomalous situation where the expected number of 

virtual processors are not available which might cause applications to fail or the OS to initiate some sort 

of hardware recovery operation. 

 

FIGURE 16. READY TIME (IN MILLISECONDS) ACCUMULATED BY THE FOUR WINDOWS GUEST MACHINES EACH INTERVAL DURING THE 

TEST RUN.  

The test environment is running soaker workloads designed to saturate all six defined virtual processors 

that we forced to execute on a machine with only two physical CPUs. It is evident that contention for the 

processors in this instance produces a good deal of Ready Time delays. Next, let’s turn to an inside view 

to see the impact of this processor contention on each of the Windows guest machines. 
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FIGURE 17. THE INTERNAL VIEW OF PROCESSOR UTILIZATION AND THE PROCESSOR QUEUE LENGTH FOR ONE OF THE 2-WAY VIRTUAL 

MACHINES. PROCESSOR UTILIZATION IS BROKEN OUT INTO KERNEL MODE TIME AND USER MODE TIME AND IS AVERAGED ACROSS BOTH 

VIRTUAL PROCESSORS. 

Figure 17 provides an internal view of processor utilization and the processor queue length for one of 

the defined 2-way guest machines. For the sake of comparison Figure 18 zooms into the external 

measurements of processor utilization for the same one-hour interval. Peaks and valleys in the internal 

data do appear to match up well with the external data. 

For example, a peak interval in the external utilization data such as the spike that occurs at 4:04 PM 

appears to correspond to a peak interval in the internal data. At 4:04 pm, internal measurements of CPU 

time reported overall processor utilization averaging almost 97% busy. The external VMware Host 

measurements indicate the guest machine consuming CPU averaging 44% of a single CPU. Another 

interval at 4:15 pm in which the guest machine suffers from starvation according to the external 

measurements shows little CPU time being consumed internally. The external measurement for this 
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starvation interval was just over 4% utilization, while internally the Windows measurements reported 

only about 5% utilization.  

 

FIGURE 18. THE EXTERNAL MEASUREMENTS OF CPU UTILIZATION TAKEN BY THE VMWARE HOST SOFTWARE FOR THE R2-2008 

WINDOWS 2-WAY GUEST MACHINE.  

Figure 19 is a different view of the erratic CPU usage pattern that arises due to contention for physical 

CPUs in this example. It is a box plot showing the distribution of processor utilization measurements 

reported internally each hour. The bulk of the measurement intervals show the processor heavily 

utilized, running at or near 100% capacity. The box plot view also highlights those measurement 

intervals where, in contrast, little or no processor resources were used. These intervals of low utilization 

correspond to periods where the VMware Host scheduler provided few opportunities for the guest 

machine to execute, due to contention for physical CPUs. 
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FIGURE 19. A BOX PLOT OF THE % PROCESSOR TIME PERFORMANCE COUNTER FROM ONE OF THE 2 CPU WINDOWS GUEST MACHINES 

FROM THE VMWARE BENCHMARK TEST. INTERVALS OF VERY LOW UTILIZATION CORRESPOND TO PERIODS WHERE THE VMWARE HOST 

SCHEDULER PROVIDED FEW OPPORTUNITIES FOR THE GUEST MACHINE TO EXECUTE, DUE TO CONTENTION FOR PHYSICAL CPUS. 

Finally, let’s look at measurements of application response time to see how this contention for physical 

CPUs is impacting the execution time of the application. The application response times were measured 

internally by the application using embedded calls to the Scenario instrumentation class library, which 

relies on the QueryPerformanceCounter (QPC) API to measure elapsed time. Since QPC() resorts to using 

either an rdtsc instruction or making an external call to the HPET in Windows 6.1 – as discussed above, 

the scenario timings in a virtual environment reflect VMware’s use of apparent time. 

To establish a baseline of performance expectations, we first ran each guest Windows machine in a 

standalone mode where only one virtual machine was active on the VMware Host. We were then able 

to compare the performance of the same application running with all four virtual machines active, the 

conditions which generated an extreme amount of contention for physical CPUs. The application 

response time measurements are illustrated in Table 1. In standalone mode, the 1-CPU guest was able 

to complete one full iteration of the benchmarking program’s set of tasks, which execute concurrently 

until completion, in 1:27 (mm:ss). The 2-CPU flavor of the guest machine was able to complete the 

identical set of tasks in just 54 seconds, an improvement of approximately 40%. 

 1 CPU 

Guest 

2-CPU 

Guest 

standalone 1:27 0:54 

contention 2:00 2:15 

 +38% +150% 

TABLE 1. COMPARING APPLICATION RESPONSE TIMES WITH AND WITHOUT CONTENTION FOR PHYSICAL CPUS. 
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When all four Windows guest machines were executing concurrently, application response time 

increased by 38% on the 1-CPU guest machine. At the same time, application response time on the 2-

CPU guest machine increased by 150%. Under conditions in the test where we generated an extreme 

amount of contention for physical CPUs, response times were reported that were worse when the 

application was run on the 2-CPU guest machines compared to the 1-CPU guests. This performance 

anomaly is due to the fact that VMware requires two available processors before it will schedule 

execution of a 2-CPU guest, so the guest machines that require fewer CPUs have more opportunities to 

run. The paradox of running in the virtualization environment is that a workload that normally requires 

concurrent access to more processor capacity can experience more processor contention-related delays. 

In summary, virtualization perturbs the clocks and timers that the guest OS relies upon in performance 

measurement. It requires analysis of a significant amount of performance data, but it is possible to 

reconcile the performance measurements gathered by a Windows guest machine with the external 

measurements of processor utilization gathered by the VMware Host. The external measurements 

provide an accurate assessment of the guest machine’s usage of the physical CPUs that are managed by 

the VMware Host. Contention for virtualized resources can create performance problems when the 

applications accessing those resources are delayed when they are in use by a different guest machine. 

The internal measurements taken by the guest OS are the only way to assess the impact of these 

resource constraints on the performance of the applications running on the guest machine. 

Measuring processor utilization from inside the hardware 

To conclude this article, I would like to reiterate that some of the concern expressed over the accuracy 

of the legacy processor utilization measurements in Windows is misplaced. I am sympathetic to 

complaints that the anomalies discussed here lead to measurements of processor utilization and 

processor queuing in Windows that contradict established analytic approaches to modeling computer 

performance. This is unfortunate, and is something that should be fixed. As discussed in some detail 

here, an event-driven approach to deriving these CPU usage measurements promises significantly 

greater fidelity. 

However, I worry about performance analysts relying on external measurements of CPU time consumed 

by running processes and threads too much these days. That is not because the processor is any less 

critical a processing resource these days, but more because I see very serious issues that a naïve reliance 

on measurements of CPU elapsed time ignores. Measurements we are able take of processor activity at 

an OS level from the outside looking in obscure much of what is actually happening at the hardware 

level.  

Let me explain. On current Intel and AMD microprocessors, what is going on inside the processor is 

often more important than any measurements you can take externally. On the Intel microarchitecture, 

for example,24 every instruction processed is executed in a series of 20-30 steps in the instruction 

execution pipeline. If all goes well, each pipeline step in the execution of a complete instruction takes 

                                                           
24

 See, for example, this blog post that discusses the microarchitecture of the Core i7 (or Nehalem) machines that 
are Intel’s current flagship CPU product: http://blogs.msdn.com/ddperf/archive/2008/04/01/thoughts-on-intel-s-
recent-hardware-announcements.aspx.  

http://blogs.msdn.com/ddperf/archive/2008/04/01/thoughts-on-intel-s-recent-hardware-announcements.aspx
http://blogs.msdn.com/ddperf/archive/2008/04/01/thoughts-on-intel-s-recent-hardware-announcements.aspx
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one clock cycle to complete. In addition, these processors feature superscalar architectures. They are 

capable of exploiting instruction level parallelism to execute multiple instructions in parallel during each 

clock cycle. 

In the previous paragraph I have been careful to cloak my account of the marvelous capabilities of 

current generation microprocessors in terms of their potential performance because, unfortunately, it is 

largely unrealized potential. Processors capable of executing multiple instructions per cycle seldom 

reach that potential on real world workloads. They contain elaborate parallel instruction execution 

pipelining hardware that is seldom fully utilized. 

The most common reason that the hardware is under-utilized is the performance bottleneck in current 

microprocessors known as the “memory wall.” The elaborate pipelined, superscalar microarchitecture 

of the processor stalls whenever the CPU is forced to fetch data or instructions from its attached RAM, 

instead of its on-board memory caches. Essentially, it takes so long to access DRAM that referencing 

data that is not already available in one of the caches is pretty much guaranteed to stall the pipeline. 

(Note: a pipeline stall is defined as a processor clock cycle in which no instructions are retired. The 

“instructions retired” terminology reflects the fact that the original instructions are decomposed into  µ-

ops inside the pipeline, which absent interlocks and other dependencies can be executed out of order 

and in parallel. Once all the µ-ops associated with the instruction are complete, the original instruction 

can be retired. Instructions must be retired in sequence, preserving the intended logical instruction 

execution stream of the original program.) 

The term “memory wall” was first coined in 1994 when engineers first started to notice of the fact that 

microprocessor clock rate was increasing considerably faster than the speed of DRAM memory access. 

(See Wulf and McKee’s article entitled “Hitting the Memory Wall: Implications of the Obvious” that is 

posted here.) For example, an Intel tutorial on hardware performance (here) gives the following 

(approximate) timings on memory latency: 

Cache  
Level 

Latency 
(ns) 

1 1 
2 5 
3 120 

 

By the way, these are representative, ballpark estimates – the actual memory latency on the machines 

you are running is apt to be different. 

The tutorial then observes, “If a load misses in all caches it will eventually come to the head of the ROB 

and block instruction retirement.” The ROB is the microarchitecture’s Re-Order Buffer, a staging area in 

the pipeline where µ-ops from decoded instructions are queued prior to execution inside the pipeline. In 

plainer English, the delay associated with a memory reference that misses all the caches and must be 

resolved by latching DRAM is so long that the instruction pipeline is pretty much guaranteed to stall, no 

matter how much instruction pre-fetching and other tricks to keep the pipeline loaded are performed.  

http://www.cs.virginia.edu/papers/Hitting_Memory_Wall-wulf94.pdf
http://software.intel.com/en-us/articles/recap-virtual-memory-and-cache
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Consider a program that executes two Load instructions back-to-back that each references a memory 

location where a number is stored, multiplies them together, and stores them back in a third memory 

location. Something like (in pseudo-code): 

L  Register1, faraway1 

L   Register2, faraway2 

M Register1, Register2  

ST Register1, faraway3 

 

Now, suppose all three references to the faraway memory locations are cache misses. The first Load will 

take about 120 ns. to execute, and so will the second. At that point, the Multiply Register instruction can 

execute very quickly because the operands are available in internal registers. The final Store instruction 

will also execute quickly, writing directly to cache and deferring the update physical memory as long as 

possible. Effectively, due to the memory wall, this is a program that will be able execute 4 instructions in 

roughly 240 nanoseconds. If the memory references the Load instructions need are L1 cache hits, the 

same instruction sequence can execute in about 1 nanosecond. (Note these are super-scalar processors 

capable of executing multiple instructions in parallel. With effective caching, the instruction sequence 

could be completed in just 2 or 3 clock cycles.) 

The point of this example is the folly of naively equating CPU time with CPU instruction execution rates. 

Given the way these Intel processors perform, it is relatively easy to find examples of programs that 

execute for long periods of time, yet do not execute their instructions very efficiently. The Intel x64 

architecture currently incorporates simultaneous multithreading (what Intel calls Hyper-threading), 

dynamic over-clocking and other high-end hardware features. Server machines with complex NUMA 

architectures are in widespread use. On these complex machines, relying only on execution time on the 

processor from the vantage point of the OS misses many important aspects of efficient use of processor 

resources.  

Hardware performance counters are available that can report on actual CPU instruction execution rates, 

and many other useful internal metrics. Currently, these hardware performance counters are available 

only in specialized tools, such as Intel’s vTune product, a similar product from AMD, and some limited 

support for Intel hardware performance counters in the Visual Studio Profiler. Intel hardware has a very 

rich performance monitoring interface. In the past, Intel was willing to make wholesale changes to the 

performance monitoring interface from release to release of the hardware that discouraged those 

software developers outside of Intel who were trying to keep up with all that model-dependent 

behavior.  

Recently, however, Intel has designated a small set of performance counters of near-universal appeal 

and declared its intent to support this stable counter set on all x64 architecture machines going forward. 

This “architectural” counter set includes the Instructions retired counter that measures the instruction 

execution rate of the underlying processor hardware. This is an encouraging development. While many 

of the Intel hardware performance counters require esoteric knowledge of the hardware that few 

people outside specialists in the field in Intel possess, the basic hardware performance counters in the 
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architectural counter set are suitable for use by a much broader population of performance engineers 

and analysts. Further instrumenting the Windows OS Scheduler to grab a measure of instructions 

executed by the hardware at the time of a context switch would be a valuable addition to the 

QueryThreadCycleTime function in some future release of Windows. 

There are currently two serious barriers remaining that limit wider adoption of the Intel hardware 

counters to augment the OS view of thread execution time. In the current hardware architecture, there 

is no reservation protocol that ensures that once a performance monitoring application such as vTune 

programs one of the special purpose Performance Monitoring Registers (PMRs) that those PMRs will 

stay in that mode. Today, it is possible for a 2nd performance monitoring application to change the way 

PMRs are programmed out from under the original application. Windows 7 actually provides a 

centralized facility to program the PMRs, but so long as programs like Intel’s vTune continue to program 

the PMRs directly, this is not a wholly satisfactory solution. A reservation protocol at the hardware level 

would force every monitoring program that wanted to access the hardware performance counters to 

opt into a single, Windows-orchestrated sharing scheme.  

A second obstacle is what to do about the limited number of Performance Monitoring Registers that 

exist – the number of possible performance counters far exceeds the number of PMRs available in the 

hardware to access them – and how to serve them in a virtualization environment. On the NUMA 

servers that most data centers run with virtualization, the hardware counters are potentially very useful 

to optimize the scheduling of guest machines. Similarly, massively parallel processing programs 

executing inside virtual machine guests might want to optimize their scheduling of parallel threads 

based on hardware counters. How to share the limited number of Performance Monitoring Registers 

that are available across the VM Host and its guest machine remains an open issue.  


