
VMWARE PERFORMANCE STUDY
VMware ESX Server 3

Ready Time Observations
VMware ESX Server is a thin software layer designed to multiplex hardware resources efficiently
among virtual machines running unmodified commodity operating systems. In many
computing environments, individual servers are underutilized, allowing them to be
consolidated as virtual machines on a single physical server with little or no impact on
performance. Similarly, many small servers can be consolidated onto fewer larger machines to
simplify management and reduce costs.

To achieve best performance in a consolidated environment, you must consider ready time —
the time a virtual machine must wait in a ready-to-run state before it can be scheduled on a
CPU. This paper provides information to help you understand the factors that influence ready
time on an ESX Server 3.0 system. It covers the following topics:

• Providing Access to Computing Resources on page 1

• Test Description and Findings on page 3

• Processor Utilization versus Ready Time on page 4

• Ready Time on SMP and Uniprocessor Virtual Machines on page 5

• Scheduler Trace on page 6

• Interpreting Ready Time on page 7

Providing Access to Computing Resources
Typical ESX Server hosts in production environments are likely to host multiple operating system
instances on a multiprocessor system. These instances of the operating systems run in virtual
machines and are referred to as guest operating systems, or guests. Each guest runs one or more
applications. The ESX Server software schedules these guests to use the physical CPUs on the
host as and when there is demand on the applications supported by the guests.

The virtual machine that runs a guest operating system has multiple components. These include
the virtual CPU that the guest operating system uses. The virtual machine monitor manages the
virtual machine’s access to such hardware resources as CPU, memory, disk storage, network
adapters, mouse, and keyboard. In this paper, discussion of scheduling a guest refers to
scheduling the virtual CPU of the virtual machine to use the physical CPU of the host. In
addition, the ESX Server software runs several processes to perform maintenance activities. The
virtual machine components and these processes can be more complex than normal processes
seen on operating systems. The physical CPUs on the ESX Server host are shared by all these
maintenance processes as well as the virtual machines.

Whenever a resource is shared, there is a chance that an attempt to use the shared resource will
not be fulfilled immediately because the resource is busy. When multiple processes are trying to
use the same physical CPU, that CPU may not be immediately available and a process must wait
1

Ready Time Observations
before ESX Server can allocate a CPU to it. The ESX Server scheduler manages access to the
physical CPUs on the host system. The time a virtual machine or other process waits in the
queue in a ready-to-run state before it can be scheduled on a CPU is known as ready time.

As overall CPU utilization and the number of virtual machines increase, the scheduler is more
likely to require a virtual machine to wait for access to a CPU. Even when a guest operating
system is not servicing load, there are maintenance activities that the operating system must
perform (for example, it must service clock interrupts to maintain correct time). Thus, even idle
guests must be scheduled, consume CPU resources (albeit small), and accumulate ready time.
The fact that the scheduler is allocating CPU resources to operating systems — rather than to
applications as a normal operating system does — can make the scheduling somewhat more
complex than it is in normal operating systems.

As part of their performance and capacity planning, ESX Server administrators have looked at
the statistics for processes running on the host and used the ready time metric as one of the
inputs. Ready time can be an indicator of saturation on a system. Users sometimes equate the
ready time observed with run queues on Unix or Linux. The fact that run queues are reported on
a per-processor basis while ready time is reported for each virtual machine (or each virtual CPU
in the case of multiprocessor virtual machines) causes the metric to be slightly different. Some
users have asked how a virtual machine can accumulate ready time while it appears that CPUs
are also accumulating idle time. This document attempts to address some of these questions
about ready time.

Several factors affect the amount of ready time seen.

• Overall CPU utilization

You are more likely to see ready time when utilization is high, because the CPU is more
likely to be busy when another virtual machine becomes ready to run.

• Number of resource consumers (in this case, guest operating systems)

When a host is running a larger number of virtual machines, the scheduler is more likely to
need to queue a virtual machine behind one or more that are already running or queued.

• Load correlation

If loads are correlated — for example, if one load wakes another one when the first load
has completed its task — ready times are unlikely. If a single event wakes multiple loads,
high ready times are likely.

• Number of virtual CPUs in a virtual machine.

When co-scheduling for n-way Virtual SMP is required, the virtual CPUs can be scheduled
only when n physical CPUs are available to be preempted.

In multiprocessor systems, an additional factor affects ready time. Virtual machines that have
been scheduled on a particular CPU will be given a preference to run on the same CPU again.
This is because of performance advantages of finding data in the CPU cache. In a multiprocessor
system, therefore, the ESX Server scheduler may choose to let a few cycles on a CPU stay idle
rather than aggressively move a ready virtual machine to another CPU that may be idle. Virtual
machines can and do move occasionally when deemed beneficial by the scheduler algorithm.
Scheduler options can be used to make this migration more aggressive; however, our tests
indicate that this results in a lower overall system throughput and may not be desirable.

This adds an additional complication in understanding ready time on multiprocessor systems.
Even when a CPU is idle, a virtual machine may be ready and waiting — that is, accumulating
ready time.
2

Ready Time Observations
Test Description and Findings
The objective of these tests was to establish patterns correlating ready time, CPU utilization, and
use of SMP virtual machines, and to look at scheduler event traces (available only in ESX Server
3.0) to see if CPUs were being used efficiently. For the most part the analysis was done on the
beta 2 version of ESX Server 3.0, though test results were also collected on ESX Server 2.5.2.

The tests were run on a Hewlett-Packard DL 585 with four AMD Opteron CPUs at 1.6GHz and
4GB of RAM. We set up 10 virtual machines on this server, each with 256MB of RAM. Six of the
virtual machines were set up as uniprocessor virtual machines. The other four had two CPUs
each. All the virtual machines were running Red Hat Enterprise Linux 3.

The workload used in the tests was a custom CPU burner program, a single-threaded load
generator. The program ran a fixed number of iterations of a CPU-intensive activity, then slept for
some time. The amount of time spent in the compute-intensive loop or in sleep was in the same
order as the default scheduler quantum (the time a guest can be on a CPU before it is
descheduled to give other guests a turn — 50ms by default). On a system that is very busy, the
behavior of the program becomes somewhat less predictable. The work element of the
program is a fixed quantum. However, the sleep time is dependent on the guest operating
system in the virtual machine delivering an interrupt to tell the CPU burner it is time to wake up.
As the CPU the virtual machines are running on gets busier, it is possible that the virtual
machine does not get scheduled to deliver this interrupt in a timely manner and the actual
sleep periods thus get longer.

In a real-world workload, if a guest operating system is receiving a steady stream of work, it
tends to accumulate more work, waiting in its queue, while the virtual machine is not active. In
this simulation, on the other hand, work does not accumulate while the virtual machine is
inactive. Thus in this simulation, the amount of work done falls as the system gets busier.

For the purposes of this test, this decrease in the amount of work done is not a problem,
because we want to compare actual utilization with accumulated ready time. However,
utilization does not grow in a linear fashion as load is added to the system.

Data for all tests was collected over a 10-minute period. The esxtop tool took periodic
snapshots of the system. We used those snapshots to calculate how much ready time was being
accumulated by virtual machines and other processes on the server. Utilization and ready time
used here are aggregates for the virtual machines. Utilization and ready time from all other
components of ESX Server are small and were not taken into consideration for this test.
3

Ready Time Observations
Processor Utilization versus Ready Time
The first test (Figure 1) shows how ready time changes with utilization. Six virtual machines were
running on the test server. All of them were pinned to a single CPU. Load was generated by the
CPU burner program run with a setting of approximately 15 percent, so that if it were the only
thing running, the virtual machine would consume close to 15 percent of the capacity of a
single CPU. Idle virtual machines also consumed some CPU capacity to perform guest operating
system maintenance tasks.

The test started with the CPU burner running in a single virtual machine. After each 10-minute
period, another guest started running the CPU burner. The data points in Figure 1 represent the
statistics for each increment, as the CPU burner runs in one virtual machine, then in two, and
eventually runs in all six. Because of the increase in sleep times, as explained in the previous
section, the actual utilization from the CPU burner drops from the initial 15 percent when a
single virtual machine is running. The utilization decrease is about 10 to 15 percent, depending
on the version of ESX Server and the efficiency with which it delivers the interrupts.

Figure 1: Aggregate ready time compared to utilization

The tests illustrate that with ESX Server 2.5, the ready time starts to increase dramatically
between 55 and 60 percent utilization. With the scheduler changes made in ESX Server 3.0, this
increase occurs around the same time but is much less sharp. At higher utilizations, the ESX
Server 3.0 scheduler does a better job of servicing virtual machines efficiently, thus overall ready
time remains lower.

Because ready time is time a process spends waiting when it could be running, it has a direct
impact on response time. During the measurement period, because the virtual machines were
all pinned to a single CPU, 600 seconds of CPU time were available. In the case in which four of
the virtual machines have load, about 300 seconds of ready time were accumulated. An average
50 percent slowdown would therefore be expected. An event with a response time of 1 second
may be expected to take 1.5 seconds under this level of load as a direct result of delays caused
by ready time. This is not unexpected in observations of multiuser systems under load. The same
factors apply to an ESX Server host running multiple virtual machines.

It is important to note that increasing amounts of ready time do not mean that the remaining
CPU on the system is unusable. It just means that due to such factors as load synchronicity, there
are periods when the CPU has no work to do and other times when it is running one virtual
machine but has one to five others ready to run and waiting.

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

ESX Server 2.5

ESX Server 3.0

Utilization (%)

R
ea

d
y

Ti
m

e
(s

ec
)

4

Ready Time Observations
Ready Time on SMP and Uniprocessor Virtual
Machines
We ran an additional test to verify that there was no significant difference in ready time when
running different mixes of SMP and uniprocessor virtual machines. We considered this an
important question because of ESX Server co-scheduling (an attempt to give roughly equal time
to all the virtual CPUs of an SMP virtual machine). In this test, the virtual machines were not
pinned to a CPU, thus migrations could happen.

The test was run on a four-CPU system. Six single processor virtual machines and three SMP
virtual machines (each with two virtual CPUs) were running for the duration of the test. The test
involved running six instances of the CPU burner program set to consume 50 percent of a CPU
— in other words, a total of 6 * 50% = 300% or three CPUs of the four available. The CPU burner
was run in various combinations of uniprocessor and SMP virtual machines, starting with the
CPU burner running only in uniprocessor virtual machines, then shifting one instance at a time
to the SMP virtual machines until all six instances were running in three SMP virtual machines.

Figure 2: Used and ready time for various configurations

The results indicate that in ESX Server 3.0 there is little difference in ready time, whether this load
is running on uniprocessor or SMP virtual machines. The scheduler overall does a better job of
ensuring all the virtual machines get scheduled frequently enough, resulting in an actual usage
of 75 percent — in contrast to ESX Server 2.5, on which the actual usage stays much lower.
Scheduler changes and other improvements in ESX Server 3.0 result in a difference in utilization,
thus preventing a direct comparison between ready times for the two versions. It is clear,
however, that co-scheduling does not have a large impact on ready time in ESX Server 3.0.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Used
Ready

6 U
P

5 U
P 1SMP

4 U
P 2 SMP

3 U
P 3 SMP

2 U
P 4 SMP

1 U
P 4 SMP 1 2-b

urn
er

4 SMP 2 2-b
urn

er

3 SMP 3 2-b
urn

er
6 U

P

5 U
P 1SMP

4 U
P 2 SMP

3 U
P 3 SMP

2 U
P 4 SMP

1 U
P 4 SMP 1 2-b

urn
er

4 SMP 2 2-b
urn

er

3 SMP 3 2-b
urn

er

ESX Server 2.5 ESX Server 3.0

Re
ad

y
Ti

m
e

(s
ec

)

5

Ready Time Observations
Scheduler Trace
ESX Server 3.0 provides a mechanism for looking at scheduler trace data to examine state
information on processes and CPUs and to validate decisions made by the scheduler. The
mechanism to collect this data is available in the released version of ESX Server 3.0. The data is
collected by the vm-support script. However, the ability to post-process the script’s binary
output file is not part of the released product. The following is the sample post-processed
output from this logging mechanism:

39989 2 46490240550 SETRUNSTATE 1212 WAIT
39990 2 46490240553 QUEUEREMOVE 1212
39991 2 46490240555 SETWAITSTATE 1212 1047688517 UPOL
39992 2 46490240558 VTIMESET 1212 24672 4216061778 4216061945 4215994412 RUN
39993 2 46490240562 VTIMESET 1212 24672 4216061945 4216061790 4215994412 VTLIMIT
39994 2 46490240569 SETRUNSTATE 1180 RUN
39995 3 46490240572 MIGRATE 1180 2 OTHER
39996 3 46490240573 QUEUEREMOVE 1180
39997 2 46490240575 QUEUEADD 1180
39998 2 46490240588 SWITCH 1212 1180
39999 2 46490240631 SETRUNSTATE 1180 WAIT
40000 2 46490240632 QUEUEREMOVE 1180
40001 2 46490240635 SETWAITSTATE 1180 28695732 RPC
40002 2 46490240637 VTIMESET 1180 35246 4216076408 4216076563 4215994419 RUN
40003 2 46490240646 SETRUNSTATE 1174 RUN
40004 1 46490240648 MIGRATE 1174 2 OTHER
40005 1 46490240650 QUEUEREMOVE 1174
40006 2 46490240652 QUEUEADD 1174
40007 2 46490240661 SWITCH 1180 1174
40008 3 46490240692 SETRUNSTATE 1187 WAIT
40009 3 46490240695 QUEUEREMOVE 1187
40010 3 46490240699 SETWAITSTATE 1187 14142156 IDLE
40011 3 46490240702 VTIMESET 1187 35246 4216090583 4216092541 4215994424 RUN

A detailed explanation of the log shown above is beyond the scope of this document. However,
based on this information it is possible to construct a state diagram of what the CPUs are doing
and which processes are ready to run, what CPUs they are waiting on, how long they waited in
ready state before they began to run, and other aspects of CPU state. We used a custom script to
convert the above data into the following state representation.

Event# ElapsedCPU0 CPU1 CPU2 CPU3
Time

9335 213549 I 1165 1170 1187
9340 213563 1192 1165 1170 1187
9341 213565 1192 1165 1170 1187
9342 213621 I 1165 1170 1187
9347 213634 1184 1165 1170 1187
9348 213636 1184 1165 1170 1187
9351 213654 1184 1165 1170 1187
9352 213655 1184 1165 1170 1187
9353 213706 I 1165 1170 1187
9358 213718 1182 1165 1170 1187
9359 213721 1182 1165 1170 1187
9362 214007 1182 1165 1170 1187
9363 214009 1182 1196 1170 1187
9364 214012 1182 1196 1170 1187
9365 214049 1182 I 1170 1187
9369 214061 1182 1165 1170 1187
9370 214064 1182 1165 1170 1187
9371 214487 1182 1165 I 1187
9376 214507 1182 1165 1202 1187
6

Ready Time Observations
9377 214509 1182 1165 1202 1187
9379 214513 1182 1165 1202 1187
9380 214520 1182 1165 1202 1187
9383 214529 1182 1165 1202 1187
9384 214531 1182 1165 1202 1187
9387 214559 1182 1165 1202 1187
9388 214561 1182 1165 1202 1187
9389 214595 1182 1165 I 1187
9393 214612 1182 1165 1172 1187 pr=1172 Wt=10795 Frm=203817, NumberIdle=31

WtOnCpu=3

The data above gives us a clear picture of which process (which identifies the virtual machine) is
running on the CPU or whether the CPU is idle. Each time a process enters a running state from
the ready state it records how long (in microseconds) the process waited in the ready-to-run
state before it could be scheduled. We also record the CPU it was waiting on and how many
times any CPU was noticed in an idle state during the time this process was ready to run.

As can be seen from the data above, there are periods when a CPU is idle while a process is
ready and waiting. In this instance process 1172 waited 10.795ms before it was allowed to run.
During this time there were 31 instances when a CPU was idle during a state change but process
1172 was not run. The decision not to migrate the process to the idle CPU is borne out by the
fact that the CPUs that were idle were in that state for very short periods of time and processes
that had been previously scheduled on that CPU did become ready to run soon thereafter. As a
result, the number of cycles lost was very small.

An analysis of this data on ESX Server 3.0 shows that processes are being allocated to CPUs very
efficiently and no processes have large waits in ready state, waiting for a particular CPU to
become available while another CPU is idle.

Interpreting Ready Time
Ready time for a process in isolation cannot be identified as a problem. The best metrics for
examining the health of a server continue to be CPU utilization, response time, and application
queues.

It is normal for a system to accumulate some ready time even when overall CPU utilization is
low. Take an example of two processes (A and B) that each use 20 percent of a CPU, for an overall
utilization of 40 percent. When process B is being scheduled, statistically 80 percent of the time
the CPU is idle. The remaining 20 percent of the time process B must wait for process A to finish.
The same is true for process A — 20 percent of the time it must wait for process B to finish.

This demonstrates that even under low utilization there is a chance that a shared resource will
be busy. Thus some ready time is to be expected and is not a problem. The behavior is no
different in the case of an ESX Server host with multiple running virtual machines. It behaves
essentially the same way that an operating system does when trying to run multiple tasks
concurrently.

The objective of server consolidation is to drive CPU utilization higher. For applications that are
purely throughput driven it may be possible to drive the system to full utilization. For systems
servicing applications that are somewhat interactive, attempting to drive the utilization beyond
60 to 70 percent may result in a perceptible lag in user activities. If response time thresholds are
established for applications, they can give a clear picture of whether service levels demanded
from an application are being met.
7

Ready Time Observations
If response time is not a critical element of an application, queuing within the application may
be used as a measure of server capacity. If the application is regularly falling behind in
processing it may be time to re-examine server capacity.

One of the ways to collect ready time data is to collect periodic snapshots using the esxtop
tool in batch mode. It may be best to start the tool in interactive mode, disable all columns not
required for these tests, then collect the data with esxtop in batch mode. You can take
snapshots a few minutes apart to determine how much used time and ready time has been
accumulated by the virtual machines during the time between snapshots.

Once you have ready time data for each virtual machine, you can estimate how much of the
observed response time is ready time. If the shortfalls in meeting response time targets for the
applications appear largely due to the ready time, you can take steps to address the excessive
ready time.

You can take various steps to reduce ready time for a virtual machine. One option is moving the
virtual machine to another server using VMotion. Reducing the load from this virtual machine
and others is another. You can reduce load from particular virtual machines by turning off
unnecessary daemons, processes, and services in the guest operating system. Another option is
adjusting CPU shares or CPU minimums in ESX Server to give more resources to virtual machines
that must have short response times.

Recent changes to the ESX Server scheduler may help lower the amount of ready time observed
and make scheduling more equitable and timely in general. We recommend upgrading to ESX
Server 2.5.3, which has a partial set of the changes made, or to ESX Server 3.0 to take full
advantage of the recent improvements.
8

VMware, Inc. 3145 Porter Drive Palo Alto, CA 94304 www.vmware.com
Copyright © 2006 VMware, Inc. All rights reserved. Protected by one or more of U.S. Patent Nos. 6,397,242, 6,496,847, 6,704,925,
6,711,672, 6,725,289, 6,735,601, 6,785,886, 6,789,156, 6,795,966, 6,880,022 6,961,941, 6,961,806, 6,944,699, 7,069,413; 7,082,598
and 7,089,377; patents pending. VMware, the VMware “boxes” logo and design, Virtual SMP and VMotion are registered
trademarks or trademarks of VMware, Inc. in the United States and/or other jurisdictions. Microsoft, Windows and Windows NT
are registered trademarks of Microsoft Corporation. Linux is a registered trademark of Linus Torvalds. All other marks and names
mentioned herein may be trademarks of their respective companies.
Revision 20061101 Item: ESX-ENG-Q406-331

	Ready Time Observations
	Providing Access to Computing Resources
	Test Description and Findings
	Processor Utilization versus Ready Time
	Ready Time on SMP and Uniprocessor Virtual Machines
	Scheduler Trace
	Interpreting Ready Time

