Do More With Postgres!

Flexible

schemas: | Less complexity
Faster in your data
development ENTERPRISEDB environment

cycles

Document,
key-value, and Data Integrity
relational in one without silos
database

NoSQL way in PostgreSQL

Agenda

 Intro to JSON, HSTORE and PL/V8

« JSON History in Postgres

« JSON Data Types, Operators and Functions

« JSON, JSONB- when to use which one?

« JSONB and Node.JS — easy as pie

* NoSQL Performance in Postgres — fast as greased lightning
« Say ‘Yes’ to ‘Not only SQL’

 Useful resources

D

© 2014 EnterpriseDB Corporation. All rights reserved. 2 ENTERPRISEDB

Let’s Ask Ourselves, Why NoSQL?

Where did NoSQL come from?
— Where all cool tech stuff comes from — Internet companies

Why did they make NoSQL?

— To support huge data volumes and evolving demands for ways
to work with new data types

What does NoSQL accomplish?

— Enables you to work with new data types: email, mobile
Interactions, machine data, social connections

— Enables you to work in new ways: incremental development
and continuous release

Why did they have to build something new?
— There were limitations to most relational databases

DB

© 2014 EnterpriseDB Corporation. All rights reserved. 3 ENTERPRISEDB

NoSQL: Real-world Applications

Emergency Management System

— High variability among data sources required high schema
flexibility

Massively Open Online Course
— Massive read scalability, content integration, low latency

Patient Data and Prescription Records
— Efficient write scalability

Social Marketing Analytics
— Map reduce analytical approaches

Source: Gartner, A Tour of NoSQL in 8 Use Cases,
by Nick Heudecker and Merv Adrian, February 28, 2014

D

© 2014 EnterpriseDB Corporation. All rights reserved. 4 ENTERPRISEDB

Postgres’ Response

« HSTORE
— Key-value pair
— Simple, fast and easy _
— Postgres v 8.2 — pre-dates many NoSQL-only solutions
— Ideal for flat data structures that are sparsely populated

« JSON

— Hierarchical document model
— Introduced in Postgres 9.2, perfected in 9.3

« JSONB
— Binary version of JSON
— Faster, more operators and even more robust
— Postgres 9.4

tD

© 2014 EnterpriseDB Corporation. All rights reserved. 5 ENTERPRISEDB

Postgres: Key-value Store

e Supported since 2006, the HStore
contrib module enables storing
key/value pairs within a single
column

« Allows you to create a schema-less
ACID compliant data store within

.« CRHUFHgle HStore column and
Include, for each row, only those keys
which pertain to the record

« Add attributes to a table and query
without advance planning

« Combines flexibility with ACID compliance

EEEEEEEEEEEE

© 2014 EnterpriseDB Corporation. All rights reserved. 6

HSTORE Examples

 Create a table with HSTORE field
CREATE TABLE hstore_data (data HSTORE) ;

* Insert a record into hstore data
INSERT INTO hstore data (data) VALUES ('
"cost"=>"500",
"product"=>"iphone",

"provider"=>"apple"');

« Select data from hstore data
SELECT data FROM hstore data ;
"cost"=>"500", "product"=>"iphone”, "provider"=>"Apple"

(1 row)

D

© 2014 EnterpriseDB Corporation. All rights reserved. 7 ENTERPRISEDB

Postgres: Document Store

« JSON is the most popular
data-interchange format on the web

» Derived from the ECMAScript
Programming Language Standard
(European Computer Manufacturers
Association).

« Supported by virtually every
programming language

* New supporting technologies
continue to expand JSON’s utility

— PL/V8 JavaScript extension
— Node.js

» Postgres has a native JSON data type (v9.2) and a JSON parser and a
variety of JSON functions (v9.3)

« Postgres will have a JSONB data type with binary storage and indexing
(coming — v9.4)

D

© 2014 EnterpriseDB Corporation. All rights reserved. 8 ENTERPRISEDB

JSON Examples
« Creating a table with a JSONB field

CREATE TABLE json data (data JSONB) ;

« Simple JSON data element:

{"name": "Apple Phone", "type": "phone", "brand":
"ACME", "price": 200, "available": true,
"warranty years": 1}

* Inserting this data element into the table json_data
INSERT INTO json data (data) VALUES

(" A "name": "Apple Phone",
"type": "phone",
"brand": "ACME",
"price": 200,
"available": true,
"warranty years": 1

P

© 2014 EnterpriseDB Corporation. All rights reserved. 9

D

ENTERPRISEDB

JSON Examples

« JSON data element with nesting:

{“full name”: “John Joseph Carl Salinger”,

“names”:

[

{"type": "firstname", “value”: ”“John”},
{“type”: “middlename”, “value”: “Joseph”},
{“type”: “middlename”, “value”: “Carl”},

{“type”: “lastname”, “value”: “Salinger”}

]

D

© 2014 EnterpriseDB Corporation. All rights reserved. 10 ENTERPRISEDB

A simple query for JISON data

SELECT DISTINCT
data->>"name' as products
FROM json data;

products
Cable TV Basic Service Package
AC3 Case Black
Phone Service Basic Plan
AC3 Phone
AC3 Case Green
Phone Service Family Plan
AC3 Case Red
AC’/ Phone

© 2014 EnterpriseDB Corporation. All rights reserved. 11

This query does not
return JSON data — it
returns text values
associated with the
key ‘'name’

D

ENTERPRISEDB

A query that returns JSON data

SELECT data FROM json data;

data

{"name": "Apple Phone", "type": "phone",
"brand": "ACME", "price": 200,
"available": true, "warranty years'": 1}

This query returns the JSON data in its
original format

D

© 2014 EnterpriseDB Corporation. All rights reserved. 12 ENTERPRISEDB

JSON and ANSI SQL - PB&J for the DBA

« JSON is naturally
iIntegrated with ANSI SQL
In Postgres

« JSON and SQL queries
use the same language, the
same planner, and the same ACID compliant
transaction framework

« JSON and HSTORE are elegant and easy to use
extensions of the underlying object-relational model

© 2014 EnterpriseDB Corporation. All rights reserved. 3 ENTERPRISEDB

JSON and ANSI SQL Example

ELECT DISTINCT
product_type,

data->>'brand' as Bra
data->>'available-as Avallablllty
ANSIESQ FROM json_data

JOIN products
ON (products.product_type=json_datd.data->>'name’)
WHERE json_data.data->>'available'=true;

—

product_type | brand | availability
___________________________ s B

AC3 Phone | ACME | true

No need for programmatic logic to combine SQL and
NoSQL in the application — Postgres does it all .

© 2014 EnterpriseDB Corporation. All rights reserved. 14 ENTERPRISEDB

Bridging between SQL and JSON

Simple ANSI SQL Table Definition
CREATE TABLE products (id integer, product name text);

Select query returning standard data set
SELECT * FROM products;

id | product name
b

1 | 1Phone

2 | Samsung

3 | Nokia

Select query returning the same result as a JSON data set
SELECT ROW_TO_JSON(products) FROM products;

{"id":1,"product_name":"iPhone"}
{"id":2,"product_name":"Samsung"}
{"id":3,"product_name":"Nokia”}

© 2014 EnterpriseDB Corporation. All rights reserved. 15 ENTERPRISEDB

JSON is defined per RFC — 7159
For more detail please refer

JSON Data TypeS http://tools.ietf.org/html/rfc7159

1. Number:

- Si nte_d decimal number that may contain a fractional part and may use exponential
notation.

- No distinction between integer and floating-point

2. String
— A sequence of zero or more Unicode characters.
- Strings are delimited with double-quotation mark
— Supports a backslash escaping syntax.

3. Boolean
— Either of the values true or false.

4. Array
— An ordered list of zero or more values,
- Each values may be of any type.
— Arrays use square bracket notation with elements being comma-separated.

5. Object
- An unordered associative array (name/value pairs).
— Objects are delimited with curly brackets
- Commas to separate each pair
— Each pair the colon "' character separates the key or name from its value.
— All keys must be strings and should be distinct from each other within that object.

6. null
- An empty value, using the word null

D

© 2014 EnterpriseDB Corporation. All rights reserved. 16 ENTERPRISEDB

JSON Data Type Example
{

"firstName": "John", -— String Type
"lastName": "Smith", -— String Type
"isAlive": true, -— Boolean Type
"age": 25, —— Number Type
"height cm": 167.6, —— Number Type
"address": { —-— Object Type
"streetAddress": "21 2nd Street”,
"city": "New York”,
"state": HNYII,
"postalCode": "10021-3100"
I
"phoneNumbers": [// Object Array
{ // Object
"type" . "home”,
"number": "212 555-1234"
I
{
"type": "office”,
"number": "646 555-4567"

}
1,

"children": [1],
"spouse": null // Null

© 2014 EnterpriseDB Corporation. All rights reserved. 17

D

ENTERPRISEDB

JSON 9.4 — New Operators and Functions

« JSON
— New JSON creation functions (json_build_object, json_build_array)
— json_typeof — returns text data type (‘number’, ‘boolean’, ...)

« JSONB data type

— Canonical representation
— Whitespace and punctuation dissolved away
— Only one value per object key is kept
— Last insert wins
— Key order determined by length, then bytewise comparison

— Equality, containment and key/element presence tests
— New JSONB creation functions
— Smaller, faster GIN indexes

- jsonb subdocument indexes

— Use “get” operators to construct expression indexes on subdocument:

— CREATE INDEX author index ON books USING GIN ((jsondata ->
'authors'));

— SELECT * FROM books WHERE jsondata -> 'authors' ? 'Carl

Bernstein'
|

D

© 2014 EnterpriseDB Corporation. All rights reserved. 18 ENTERPRISEDB

JSON and BSON

« BSON — stands for
‘Binary JSON’

« BSON 1= JSONB

— BSON cannot represent an integer or
floating-point number with more than
64 bits of precision.

— JSONB can represent arbitrary JSON values.

 Caveat Emptor!

— This limitation will not be obvious during early
stages of a project!

© 2014 EnterpriseDB Corporation. All rights reserved. 9 . ENTERPRISEDB

JSON, JSONB or HSTORE?

JSON/JSONB is more versatile than HSTORE
HSTORE provides more structure

JSON or JSONB?

— If you need any of the following, use JSON
— Storage of validated json, without processing or indexing it
— Preservation of white space in json text

— Preservation of object key order Preservation of duplicate object
keys

— Maximum input/output speed

For any other case, use JSONB

D

© 2014 EnterpriseDB Corporation. All rights reserved. 20 ENTERPRISEDB

JSONB and Node.js - Easy as TT

// require the Postgres connector
var pg = require("pg");

// connection to local database
var conString = "pg://postgres:password@localhost:5432/nodetraining";

var client = new pg.Client(conString);
client.connect();

// initiate the sample database
client.query("CREATE TABLE IF NOT EXISTS emps(data jsonb)");
client.query("TRUNCATE TABLE emps;");
client.query('INSERT INTO emps VALUES($JSON$ {"firstname": "Ronald" , "lastname':"McDonald" }$JSON$)')
client.query('INSERT INTO emps values($JSON$ {"firstname": "Mayor", "lastname": "McCheese"}$ISONS)"')

// run SELECT query
client.query("SELECT % FROM emps",function(err,result){
console. log("Test Output of JSON Result Object");
console. log(result);
console. log("Parsed rows");

// parse the result set
for (var i = @; i< result.rows.length ; i++){
var data = JSON.parse(result.rows[i].data);
console.log("First Name => "+ data.firstname + "\t| Last Name => " + data.lastname);
}
client.end();

13

T
© 2014 EnterpriseDB Corporation. All rights reserved. 21 ENTERPRISEDB

JSON Performance Evaluation

e Goal

— Help our customers understand when to chose
Postgres and when to chose a specialty
solution

— Help us understand where the NoSQL limits of
Postgres are

e Setup
— Compare Postgres 9.4 to Mongo 2.6

— Single instance setup on AWS M3.2XLARGE
(32GB)

 Test Focus
— Data ingestion (bulk and individual)
— Data retrieval

D

© 2014 EnterpriseDB Corporation. All rights reserved. 22 ENTERPRISEDB

Performance Evaluation

Generate 50 Million
JSON Documents

Load into :
Postgres 9.4 Load into MongoDB 2.6

(COPY) (IMPORT)

50 Million individual 50 Million individual
INSERT commands INSERT commands

Multiple SELECT Multiple SELECT
statements statements

© 2014 EnterpriseDB Corporation. All rights reserved. 23

T1

12

T3

ENTERPRISEDB

NoSQL Performance Evaluation

500%

Mongo DB 2.4/Postgres 9.4 Relative Performance
Comparison (50 Million Documents)

465%

450%

400%

300%

350% 276%

250%

200%

150%

i Postgres

100%

& MongoDB

50%
0%

Data Load

Insert

Select

Size

Postgres MongoDB

Data Load (s) 4,732 13,046
Insert (s) 29,236 86,253
Select (s) 594 2,763
Size (GB) 69 145

© 2014 EnterpriseDB Corporation. All rights reserved.

24

Correction to earlier versions:

MongoDB console does not allow for
INSERT of documents > 4K. This
lead to truncation of the MongoDB
size by approx. 25% of all records in
the benchmark.

D

ENTERPRISEDB

Performance Evaluations — Next Steps

« Initial tests confirm that Postgres’ can handle many
NoSQL workloads

 EDB is making the test scripts publically available

« EDB encourages community participation to
better define where Postgres should be used
and where specialty solutions are appropriate

 Download the source at
https://github.com/EnterpriseDB/pg nosal benchmark

 Join us to discuss the findings at
http://bit.ly/EDB-NoSQL-Postgres-Benchmark

© 2014 EnterpriseDB Corporation. All rights reserved. 2 ENTERPRISEDB

https://github.com/EnterpriseDB/pg_nosql_benchmark
http://bit.ly/EDB-NoSQL-Postgres-Benchmark

Structured or Unstructured?
“No SQL Only” or “Not Only SQL"?

« Structures and standards emerge!

« Data has references (products link to catalogues;
products have bills of material; components appear in
multiple products; storage locations link to ISO country
tables)

* When the database has duplicate data entries, then the
application has to manage updates in multiple places —
what happens when there is no ACID transactional
model?

© 2014 EnterpriseDB Corporation. All rights reserved. 2 . ENTERPRISEDB

Ultimate Flexibility with Postgres

In-DB Development
PL/pgSQL, PL/SQL, PL/Tcl, PL/Perl

PL/Python

Cloud Structured
Deployment Data

Unstructured On Premise
Data Deployment

Web 2.0
Application

Development

© 2014 EnterpriseDB Corporation. All rights reserved. 2 ENTERPRISEDB

Say yes to ‘Not only SQL’

« Postgres overcomes many of the standard objections
“It can’t be done with a conventional database system”

* Postgres

— Combines structured data and unstructured data (ANSI SQL
and JSON/HSTORE)

— Is faster (for many workloads) than than the leading NoSQL-
only solution

— Integrates easily with Web 2.0 application development
environments

— Can be deployed on-premise or in the cloud

Do more with Postgres — the Enterprise NoSQL Solution

D

© 2014 EnterpriseDB Corporation. All rights reserved. 28 ENTERPRISEDB

Useful Resources

» Postgres NoSQL Training Events

— Bruce Momjian & Vibhor Kumar @ pgEurope
— Madrid (Oct 21): Maximizing Results with JSONB and PostgreSQL

« Whitepapers @ http://www.enterprisedb.com/nosql-for-enterprise

— PostgreSQL Advances to Meet NoSQL Challenges (business
oriented)

— Using the NoSQL Capalbilities in Postgres (full of code examples)

* Run the NoSQL benchmark
— https://qgithub.com/EnterpriseDB/pg nosql benchmark

D

© 2014 EnterpriseDB Corporation. All rights reserved. 29 ENTERPRISEDB

https://github.com/EnterpriseDB/pg_nosql_benchmark

Do More With Postgres!

Flexible

schemas: { Less complexity
Faster in your data
development ENTERPRISEDB environment

cycles

Document,
key-value, and Data Integrity
relational in one without silos
database

