

Applicability of Deep Learning to
Construct a Forex Trading Robot
Group report

FACULTY OF ECONOMICS AND BUSINESS

Pieter-Jan Leplae & Robin Meysen
r0482895 & r0588889

MASTER OF BUSINESS ENGINEERING

Major Data science en business analytics

Promoter: Prof. Dr. Seppe vanden Broucke

Co-promoter: Prof. Dr. Roel Leus

Academic year 2018-2019

Tutor: Björn Rafn Gunnarsson
 Gunnasson

Applicability of Deep Learning to
Construct a Forex Trading Robot
Group report

Deep Learning has created a lot of fuzz in various domains of automation, ranging from autonomous driving to

even the financial sector. In the latter, curiosity exists whether Deep Learning could be used to fully automate

trading. Therefore, this thesis will investigate the applicability of Deep Learning to predict intraday foreign

exchange (Forex) rates. This was done by constructing two models based on state-of-the-art techniques for

financial predictions: the convolutional neural network (CNN) and the long short-term memory (LSTM) model and

comparing their performance with both naïve approaches, such as persistence models, and traditional

approaches, such as the Auto Regressive Integrated Moving Average (ARIMA). Throughout this paper, the

results of the CNN and LSTM models did not outperform traditional nor naïve models, although they showed

some potential for higher forecasting horizons and lower granularities. With neither of the models having learned

useful insights into the Forex market, creating a trading robot based on these models might not be useful, as it

would most likely not succeed in making consistent profits.

Pieter-Jan Leplae & Robin Meysen

Promoter: Prof. Dr. Seppe vanden Broucke

Academic year 2018-2019

FACULTY OF ECONOMICS AND BUSINESS

MASTER OF BUSINESS ENGINEERING

Major Data Science and Business Analytics

Co-promoter: Prof. Dr. Roel Leus

 Tutor: Björn Rafn

r0482895 & r0588889

 I

Acknowledgements

We would like to express great appreciation to our promotor, Prof. Dr. Seppe vanden

Broucke, and our daily supervisor, Björn Rafn, for their great contributions and feedback

during the entire process of making this thesis.

Furthermore, we would also like to thank Double Duty NV and therefore also the CEO,

Ron Leplae, for providing us with data for our dissertation and some useful insights into

some of the market characteristics.

Finally, we would also like to thank our family and friends for the support and

encouragement that has been given during the entirety of this process.

 II

Table of Contents

1 Introduction ... 3

2 Literature review ... 5

3 Methods for forex prediction ... 8

3.1 Traditional methods ... 8

3.1.1 Persistence model (Naïve approach) ... 8

3.1.2 ARIMA model ... 8

3.2 Deep Learning methods .. 9

3.2.1 Artificial Neural Networks (Multi-Layer Perceptron) ... 9

3.2.2 Convolutional Neural Networks .. 10

3.2.3 Recurrent Neural Networks & LSTM .. 10

3.3 Machine Learning Concepts .. 10

3.3.1 Grid Search .. 10

3.3.2 Cross-validation ... 10

3.3.3 Early stopping .. 11

3.3.4 Dropout .. 11

3.3.5 Batch Normalization ... 11

4 Methodology ... 13

4.1 Data Collection .. 13

4.2 Data Preparation ... 13

4.2.1 Aggregation ... 13

4.2.2 Data exploration ... 14

4.2.3 Differentiating ... 15

4.2.4 Train/test split... 15

4.3 Choosing a Model and Architecture .. 16

4.3.1 Convolutional Neural Networks .. 16

4.3.2 Long Short-Term Memory .. 16

4.4 Training the Model .. 16

4.4.1 Input features ... 16

4.5 Evaluating the model ... 17

4.5.1 Persistence model ... 17

4.5.2 ARIMA model ... 18

4.6 Tuning the hyperparameters ... 19

4.7 Making Predictions .. 20

4.7.1 One step ahead ... 20

4.7.2 Multiple step ahead .. 21

5 Results ... 22

5.1 One-step forecasting ... 22

5.1.1 Persistence model ... 22

5.1.2 ARIMA ... 23

5.1.3 CNN ... 24

5.1.4 LSTM ... 26

5.2 Multi-step predictions .. 26

6 Discussion .. 28

6.1 CNN .. 29

6.2 LSTM... 29

6.3 Comparison and remarks .. 31

7 Conclusions .. 32

 1

List of figures

Figure 1: Example of a Multi-Layer Perceptron .. 9

Figure 2: Visual representation of a NN before (a) and after (b) applying dropout........... 11

Figure 3: Closing price per year .. 14

Figure 4: Differentiated closing price per year .. 15

Figure 5: Representation of CNN model ... 16

Figure 6: Representation of LSTM model ... 16

Figure 7: ACF and PACF for closing price of the 610-tick bars .. 18

Figure 8: ACF and PACF of the closing price of the 610-tick bars after taking first

differences ... 19

Figure 9: A sample of the true and predicted values for the price-based persistence

model ... 22

Figure 10: A sample of the true and predicted values for the difference-based persistence

model ... 23

Figure 11: A sample of the true and predicted values for the ARIMA model 23

Figure 12: A sample of the true and predicted values for the ARIMA model 24

Figure 13: A sample of the true and predicted values for the CNN model – 610 ticks 25

Figure 14: A sample of the true and predicted values for the CNN model – 2584 ticks ... 26

Figure 15: Example of the constant predictions - 610-tick bars .. 28

Figure 16: A sample of the predicted differences vs. actuals for the CNN – 2584-tick bars

 .. 29

Figure 17: A sample of the predicted differences for the LSTM – 2584-tick bars............. 30

Figure 18: The predictions for the LSTM put into perspective .. 30

file:///C:/Users/robin/Documents/1.%20HIR/Master2/Thesis/Final%20versions/2019.05.15v4-Pieter-Jan-Robin.docx%23_Toc8839189
file:///C:/Users/robin/Documents/1.%20HIR/Master2/Thesis/Final%20versions/2019.05.15v4-Pieter-Jan-Robin.docx%23_Toc8839190
file:///C:/Users/robin/Documents/1.%20HIR/Master2/Thesis/Final%20versions/2019.05.15v4-Pieter-Jan-Robin.docx%23_Toc8839194
file:///C:/Users/robin/Documents/1.%20HIR/Master2/Thesis/Final%20versions/2019.05.15v4-Pieter-Jan-Robin.docx%23_Toc8839194

 2

List of tables

Table 1: Overview of literature .. 6

Table 2: Summary statistics of closing prices per year ... 14

Table 3: Summary statistics of differentiated closing prices per year 15

Table 4: Overview of input features per setup .. 17

Table 5: AIC values for different order ARIMA models ... 19

Table 6: Tune grid for the CNN and LSTM ... 20

Table 6: Overview of results MSE ... 26

 3

1 Introduction

Time series forecasting is the practice of applying models on past observations to predict
values in the future and is currently one of the most actively used data science methods
in business. Popular applications can be found in supply chain management, inventory
planning or sales predictions, but also for different applications such as in weather
forecasting or for earthquake prediction. Yet another field that has received great
attention in the past, is the forecasting of financial time series.

Within the trade industry, predictive models have been used to help make investment
decisions with the aim of increasing risk adjusted profits. However, there has been a lot of
doubt about making profits off predictive models. According to the efficient market
hypothesis (EMH), financial markets reflect all available information perfectly, which
makes forecasting in essence useless. In practice, markets are not fully efficient though,
making forecasting techniques that are able to capture specific patterns beneficial.
Moreover, investment banks such as Goldman Sachs have proven to be profitable on a
consistent basis. A figure which shows the daily net revenues for all Goldman Sachs’
trading days of 2017 can be found in Appendix 1. A similar distribution is noticeable when
inspecting other years. Things like this explain why many judge the EMH to be incorrect.

Although some market-specific characteristics of e.g. the stock market might not support
the EMH theory, the spot currency market is still considered to be one of the most
efficient markets. With its average daily trading volume of about 5.3 trillion USD (Burns,
2019), which greatly exceeds the volume of the New York Stock Exchange, this market
has one of the highest liquidities. Whereas other markets trade stocks of a certain
company of the ownership of a certain commodity, this market is focussed on the
exchange of one currency into another, e.g. euro to American dollar. Although this market
serves as a way of ensuring profits for international companies by buying pull- or call-
options for a certain currency pair, 90% of forex trading is of speculative nature (Burns,
2019).

For a long time, researchers and traders have had contradicting views on the
characteristics of this market. On the one hand, traders believed that past prices and
technical indicators could be used to set up mechanical trading systems. This would then
enable them to achieve simple profits with a relative low risk. In academia, on the other
hand, many researchers have supported the idea that past movements could not be used
to predict future prices. This idea was backed by evidence supporting the random walk
hypothesis, meaning that differences in exchange rates have the same distribution as a
random walk and are therefore independent of each other. Over the last few decades,
however, with the emergence of nonlinear dynamics, strong evidence suggests that
exchange rates returns are not independent of each other. Even though there might be
little linear dependence, many researches have shown the existence of nonlinear
correlations in the currency market (Tenti, 1996).

As mentioned by Borovykh, Bohte and Oosterlee (2018), it is now clear that temporal
relationships in foreign exchange rates exist, although they remain difficult to analyse and
predict due to the relatively high degree of noise and non-linear trends in the series
(Cont, 2001). In the last years, however, machine learning techniques, and more
specifically the use of deep learning, have proven to be capable of identifying this kind of
nonlinear patterns in financial data (Fischer and Krauss, 2017).

In various fields, Deep Learning has known successful applications. From tools such as
Google Translate and the reference-based system of Netflix, and not to mention object
detection algorithms and the use of deep learning in digital marketing and robotics. With
the huge increase of computational power and storage of data over the last few decades,
the number of applications of artificial intelligence has only be increasing. Even in

 4

finance, investments in AI by hedge fund companies such as Renaissance, Citadel and
BlackRock have surged with around 90% to 940 billion USD in the last decade (Kumar,
2017). Does this mark a bright future for AI in finance?

In this paper, we will focus on applying different deep learning architectures to predict

intraday foreign currency exchange movements. More specifically, we will investigate the

performance on the prediction of Forex data of two state-of-the-art deep learning

algorithms (i.e. CNN and LSTM) and benchmark their performance against a naïve model

and a traditional forecasting method (i.e. ARIMA).

By doing this, mainly three contributions will be made to the current literature on deep
learning for forex predicting. First of all, novel Deep Learning algorithms will be
constructed, and their performance will be compared to more conventional methods for
forex trading. Even though there already exists relevant literature, the amount of useful
works is rather scarce. Besides the fact that useful literature on forex prediction is limited,
we are also motivated by the idea that forecasting foreign exchange rates is seen as an
important work. As mentioned by Deng, Yoshima, Mitsubuchi, & Sakurai (2015), it is not
only important for investors looking to increase their profits, but also for policy-makers
and entrepreneurs. Secondly, to the best of our knowledge, this is the first work to show
the application of deep learning models to forecast intraday movements of foreign
exchange rates, which might be interesting to investigate as correlations between data
points are stronger on an intraday basis. And thirdly, as far as we know, this research is
the first to show the effects on model performance of adding different input features such
as moving averages and lows and highs of prices, compared to univariate forecasting.

The remainder of this paper is organized as follows. In section 2, the most relevant
existing literature will be discussed. Section 3 will then cover the models used throughout
this paper and a few theoretical aspects that were implemented along. Section 4 covers
our experimental setup and the implementation, including data collection, data
preparation, followed by model selection, training, evaluation, finetuning, and prediction.
In section 5, the obtained results will be presented, followed by a discussion of these
results in section 6. Lastly, section 7 will state our conclusions, limitations and
recommendations for further research.

 5

2 Literature review

In 1996, Tenti compared the performance of three recurrent architectures applied on the

Deutsche mark and showed that even though the training time is long, recurrent neural

networks (RRNs) are very useful for financial forecasting. One problem with RRNs,

however, is that long-term dependencies tend to be neglected. Giles, Lawrence & Tsoi

(2001) addressed this problem by using a self-organizing map with RNNs, a method

which is nowadays known as long short-term model (LSTM). Their model was also

applied on forex data to predict the direction of change for the next business day and they

managed to obtain an accuracy close to 60% when dropping examples with low

confidence.

Dunis and Williams (2002) evaluated neural network regression (NNR) models and

benchmarked them against traditional techniques (moving average, logit and ARMA) in

forecasting and trading EUR/USD. Even though their NNR model outperformed the

traditional models, none of the models achieved a 60% accuracy in predicting a future

price movement.

Ashok and Mitra (2002) proposed a hybrid model based on an ANN which uses a Genetic

Algorithm (GA) for optimizing the parameters. Their model outperformed a set of

conditional heteroskedastic models (such as ARCH, GARCH, and GARCH-M) applied on

the major internationally traded daily foreign currencies. In the paper of Pacelli and

Bevilacqua (2010) a similar approach was used to forecast EUR/USD exchange rates.

Here, however, the model was benchmarked against other (non-optimized) ANNs. Both

papers used a model with 2 hidden layers and measured the performance with different

metrics such as mean average percentage error (MAPE), mean squared error (MSE) and

R-square (RSQ).

For a large-scale comparison between different machine learning models, we refer to

Ahmed, Atiya, Gayar and El-Shishiny (2010). In this paper, the authors evaluated eight

different techniques applied on the monthly M3 time series competition data (a set of

almost 1500 different time series, of which 145 related to finance) and concluded that the

MLP was in most cases the best performing one. A great overview of more traditional

models can be found in the paper by De Gooijer and Hyndman (2006).

Kipruto, Mung’atu, Orwa & Gathimba (2018) used a NN to forecast exchange rates of the

Kenyan currency (KES) against the USD, EUR, GPB and JPY. The authors used one

hidden layer with a sigmoid activation function and an output layer with a linear transfer

function. Then they evaluated the models based on the MAE, MAPE and RMSE.

A more complex set-up was studied by Bao, Yue & Rao (2017). They presented a deep

learning architecture which consists of 3 stages and applied this on different stock

indexes. First, the stock data is pre-processed using a wavelet transformation in order to

get rid of the noise; Then, a stack of autoencoders (fully connected layers) is applied on

the denoised data; and finally, the output is generated by a delayed LSTM. The authors

decided to benchmark their model against a traditional RNN, an LSTM, and a WLSTM

(combination of wavelet transform and LSTM) and measured their performance by three

indicators: R, MAPE and Theil U. Based on the performance measures, the complex set-

up, as discussed above, seems to be quite promising on the prediction of daily closing

prices of Forex data.

 6

Borovykh, Bohte & Oosterlee (2018) created a similar wavelet architecture based on a

convolution neural network (CNN). Their model is applied on different time series,

including S&P500 and several exchange rates, and outperformed a vector autoregressive

model (VAR) while competing with an LSTM. However, the training speed of their model

is much faster than the one of the LSTM. In their paper, the recommendation was made

to apply their model on intraday data, as the correlations between data points are

stronger on an intraday basis.

Another set-up to predict forex trends via CNN’s was proposed by Tsai, Chen & Wang

(2018). In this paper, the raw quantitative data was first pre-processed into images.

These images, containing price and moving averages (5, 10 & 20), were used to train

several deep CNN architectures. The authors concluded, however, that none of their

models produced the expected performance.

In table 1, the literature discussed is summarized into an overview. Although most of the

research papers mentioned above were not able to back up the applicability of Deep

Learning Techniques on financial time series data, the more complex and recent models

as discussed by Bao et al. (2017) and Borovykh et al. (2018), did show some promising

results. However, the applicability of these models on intraday Forex data still needs to

be investigated. Overall two set-ups seem to be the most promising for predicting

financial time series: the LSTM, as discussed by Bao et al. (2017) and the CNN, as

discussed by Borovykh et al. (2018).

Table 1: Overview of literature

SOURCE TITLE MODEL USED DOMAIN

TENTI (1996) FORECASTING FOREIGN EXCHANGE RATES USING
RECURRENT NEURAL NETWORKS

RNN FOREX

GILES, LAWRENCE &
TSOI (2001)

NOISY TIME SERIES PREDICTION USING RECURRENT
NEURAL NETWORKS AND GRAMMATICAL INFERENCE

RNN & SOM
(LSTM)

FOREX

ASHOK & MITRA
(2002)

FORECASTING DAILY FOREIGN EXCHANGE RATES
USING GENETICALLY OPTIMIZED NEURAL NETWORKS

HYBRID: NN &
GA

FOREX

DUNIS & WILLIAMS
(2002)

MODELLING AND TRADING THE EUR/USD EXCHANGE
RATE: DO NEURAL NETWORK MODELS PERFORM
BETTER?

NN FOREX:
EUR/USD

AHMED, ATIYA, EL
GAYAR & EL-SHISHINY
(2010)

AN EMPIRICAL COMPARISON OF MACHINE LEARNING
MODELS FOR TIME SERIES FORECASTING

DIFFERENT
ML MODELS

TIME SERIES
(M3
COMPETITION)

PACELLI &
BEVILACQUA (2010)

AN ARTIFICIAL NEURAL NETWORK MODEL TO
FORECAST EXCHANGE RATES

HYBRID: NN &
GA

FOREX:
EUR/USD

BAO, YUE & RAO (2017) A DEEP LEARNING FRAMEWORK FOR FINANCIAL TIME
SERIES USING STACKED AUTOENCODERS AND
LONGSHORT TERM MEMORY

WSAES -
LSTM

STOCKS

BOROVYKH, BOHTE &
OOSTERLEE (2018)

CONDITIONAL TIME SERIES FORECASTING WITH
CONVOLUTIONAL NEURAL NETWORKS

CNN FOREX,
S&P500, …

KIPRUTO, MUNG’ATU,
ORWA & GATHIMBA
(2018)

APPLICATION OF ARTIFICIAL NEURAL NETWORK (ANN)
IN MODELING FOREIGN CURRENCY EXCHANGE RATES

NN FOREX:
KENYAN (KES)

 7

TSAI, CHEN & WANG
(2018)

PREDICT FOREX TREND VIA CONVOLUTIONAL NEURAL
NETWORKS

CNN FOREX

 8

3 Methods for forex prediction

In this section, we will briefly explain the theory behind the methods used throughout this

paper.

3.1 Traditional methods

3.1.1 Persistence model (Naïve approach)

The persistence model (Brownlee, 2016) is also known as the naïve forecasting strategy.

This model only uses the most recent value of the time series to predict the value at the

next step. We will distinguish between two different ways of implementing this model:

price-based and difference-based.

3.1.1.1 Price-based

The first persistence model uses the series as-is to make predictions in the future, hence

the name price-based. As one would expect a persistence model to behave, the

predictions are made in a rathe naïve way: 𝑃̂𝑡+1 = 𝑃𝑡.

The forecasted value, 𝑃̂𝑡+1 , is the predicting closing price for the next tick bar. When

using a price-based persistence model, the forecasted value is equal to 𝑃𝑡 , the actual

closing price at tick bar t. Note that this model assumes a constant price over time and

thus always predicts that the time series will remain unchanged. Therefore, a trading

strategy based on a price-based persistence model will never open a position.

3.1.1.2 Difference-based

Whereas a price-based persistence model works with the time series as-is, the

difference-based model works with the time series in difference. Each timepoint then

reflects the difference in price. Again, the predictions are done in a naïve way: 𝐷̂𝑡+1 = 𝐷𝑡.

The forecasted value, 𝐷̂𝑡+1 , presents the predicted difference for the next tick bar. This is

then computed by just taking the value of 𝐷𝑡, the actual differentiated closing price at tick

bar t. Unlike the price-based persistence model, the price does not remain constant over

time, but the difference does, this means that this model just uses the trend of the last

two datapoints and extrapolates it for the forecasted horizon. Therefore, a trading

strategy based on the difference-based persistence model, would rely on the presence of

a trend-following characteristic of the Forex market.

3.1.2 ARIMA model

A widely used traditional forecasting model is the Auto Regressive Integrated Moving

Average, or in short ARIMA. The ARIMA model has three components, the AR, which

uses previous values as inputs, and MA component, which uses previous errors as

inputs, and an extra component that defines the number of differentiations, being the I

 9

component. These first two former components have been tuned based on the partial

autocorrelation function (PACF) and the autocorrelation function (ACF). These two plots

show an indication of the number of significant parameters for respectively the moving

average (MA) and auto regressive (AR) components. For more information on the ARIMA

model, Nau (2014) gives a quick run-through.

3.2 Deep Learning methods

3.2.1 Artificial Neural Networks (Multi-Layer Perceptron)

Deep learning is a popular subject. However, before diving into the theory of the models

implemented in this thesis, a foundation needs to be built. The simplest deep learning

model is called a Multi-Layer Perceptron (MLP). This architecture consists of at least

three layers: an input layer, one or multiple hidden layers and finally, an output layer.

Inputs are passed along the different layers, each with its own weights and non-linear

activation function until the end of the neural network is reached. In the simplest case, all

layers are fully connected, meaning that every output of the previous layer is used for the

next one. The way this model is trained goes as follows, every batch of data, the gradient

of the loss function is calculated using backpropagation. Using this gradient, the weights

are updated in an iterative way for each batch until the total number of epochs is reached.

However, some techniques do not require the total number of epochs to be completed,

but one of these will be discussed further on. Figure 1 shows an example of an MLP

architecture. For more information on MLP’s, Hernane Spatti et al. (2017) give a good

and very thorough explanation.

Figure 1: Example of a Multi-Layer Perceptron

https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html

https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html

 10

3.2.2 Convolutional Neural Networks

A slightly more complex architecture, is the Convolutional Neural Network (CNN). The

main idea behind this architecture lies within the use of its so-called filters or kernels.

These then perform convolutions, actions that are known to detect certain structures in

data. Therefore, CNNs are mainly used for image recognition. The reason for the

applicability of CNNs for financial data is its power to detect certain patterns in the

preceding datapoints, and thus giving an indication of what the direction of the movement

in price will be. For more in-depth information on the working of a CNN, Borovykh et al.

(2018) gives a brief but thorough explanation.

3.2.3 Recurrent Neural Networks & LSTM

A widely used branch of Deep Learning for time series analysis is the domain of

Recurrent Neural Networks (RNN). The main difference with standard deep neural

networks is given by their feedback loops used within the neural network. However, one

disadvantage of RNNs, is the problem of vanishing gradients, which is well explained by

Pascanu et al. (2012). One branch of the RNN models offers a specific solution to this

problem by introducing a new model architecture: Long Short-Term Memory (LSTM). This

is done by the introduction of the concept ‘forget-gate’ by Gers et al. (2000).

3.3 Machine Learning Concepts

3.3.1 Grid Search

A difficult, and often arbitrary part of creating a Machine Learning model is the choice of

hyperparameters. However, one way to solve this issue, is to run through the search

space of hyperparameters to see which kind of models fit the data best. One way to

implement this, is by using a so-called Grid Search. Here, different values are passed

along for the different hyperparameters that are present in the grid. These are then

enumerated in order to find the model that best learns how to fit the data. More

information on hyperparameter searches is given by Claesen & De Moor (2015).

3.3.2 Cross-validation

One way to validate the fitted model is by using the so-called cross-validation. As where a

standard training procedure uses one training and one validation set are used, cross

validation does this several times, based on the cross-validation parameter, which can be

arbitrarily chosen. One extension to this is the so-called stratified cross-validation. The

only difference here is that the mean value for the output are set equal, in order to not

have too difference between the datasets. When performing a Grid Search, as discussed

in the above, a stratified cross-validation is used as well.

 11

3.3.3 Early stopping

One of the most prominent questions when fitting a model on data is whether or not the

model is over- or underfit. One technique that helps solving the over- and underfitting

issues is early stopping. The concept is simple; Whenever the loss function stops

declining for the validation set after a chosen number of training epochs, the training is

immediately stopped, hence the name. This prevents the model from overfitting on the

training data without improving (or even worsening) the performance of the validation

data. One downside of this method is the arbitrarily chosen number of epochs after which

the training might be terminated. For more information on this topic, Prechelt (2012) can

be consulted.

3.3.4 Dropout

Another way to deal with overfitting, is by using dropout. As discussed by Srivastava et al.

(2014), this regularization technique randomly drops nodes at a certain dropout rate when

training the model. For example, with a dropout rate of 0.5, half of the trained nodes,

along with their connections and output value, are dropped during training. The intuition

behind dropout goes as follows, when certain nodes can be dropped, the network cannot

rely on certain nodes during training and thus will spread out the weights over different

nodes. However, when using dropout, one thing needs to be considered. As dropped

nodes during training are present in the final model, weights are changed by a factor of

one minus the dropout rate, ensuring that the outputted test values resemble the trained

output values. Figure 2 gives a visual explanation of how dropout works.

Figure 2: Visual representation of a NN before (a) and after (b) applying dropout (Srivastava
et al., 2014)

3.3.5 Batch Normalization

Another way to increase the performance of a deep learning model, is by applying batch

normalization. When using this technique, the output values of the activation function for

the different nodes in the network are then normalized, i.e. scaled between 0 and 1. After

this normalization, two parameters are added to the change the mean and standard

deviation of these outputs. By doing this, two advantages are created. First, the training

of the model can be done a lot quicker and secondly, some large weights are avoided as

this batch normalization is implemented in the process of calculating the gradients when

 12

updating the weights of the model. Therefore, batch normalization can be seen as a

replacement of dropout for avoiding an overfit of the training data.

 13

4 Methodology

Creating a Deep Learning model can be a long and tedious process. Therefore, the

framework for machine learning projects presented by Yufeng (2017) can offer some

guidance. The presented framework consists of 7 steps:

1. Data Collection

2. Data Preparation

3. Choosing a Model

4. Training the Model

5. Evaluating the Model

6. Finetuning the Hyperparameters

7. Making Predictions

However, throughout this project, steps 2 through 6 will be looped over when

experimenting with certain features and model architectures. The entire process will be

executed using Python in Google Colab.

4.1 Data Collection

The first step in any machine learning project is gathering the necessary data. In this

case the forex data of the EUR/USD market from 2016 to 2018 was gathered. When

taking a closer look at the data, a tick-by-tick granularity can easily be observed. This is

the case for 3 features: the bid, the ask and the point in time of the concerned tick. This

data was made available for this research by Double Duty NV.

4.2 Data Preparation

4.2.1 Aggregation

The first step in preparing the above-mentioned data, is by aggregating it. Due to its high

granularity and the time it would take to open and close a position, a model on highly

granular data would be a waste of computational power as our goal is not to scrape

profits by performing lightning fast trades. However, note that this is exactly what high-

frequency trading (HFT) does (Gomber & Haferkorn, 2013).

The aggregation of the data has been done based on the number of ticks (tick bars)

instead of the column indicating the time. By aggregating this way, the main problem of

time bars, being that low-activity periods are oversampled and vice versa, is avoided.

More information on this topic is given by Lopez de Prado (2018).

The number of ticks per bar can be arbitrarily chosen, but traditionally one relies on the

Fibonacci numbers (Vonko, 2019). That is why tick bars have been constructed in

batches of 610 and 2584. Depending on the volatility, these granularities represent bars

for every minute, 610 ticks in a highly volatile period, to even an hour, 2584 ticks in a

 14

period with a rather low volatility. For every batch of tick bars, the open, high, low and

close features are constructed based on the averages of the bid and the ask for every

datapoint in the batch. Next to these, the latest point in time is passed along as well.

4.2.2 Data exploration

Before using data to train predictive models, it is important to understand the data. In

figure 3, a plot of the closing prices is given. Three years of data are shown. Note that the

data of 2017 has a different trend, compared to the year before and after.

Figure 3: Closing price per year

Furthermore, table 2 reports some summary statistics for each year of our data. These

figures are constructed out of the aggregated tick bars of size 610. Firstly, the number of

values for the three years of data varies a lot. Due to the use of tick bars, this means that

a year with a higher count, such as 2016, has a higher number of transactions, whereas

2018 clearly shows a lower number of transactions. Also, interesting to see, is that the

kurtosis varies significantly from year to year. Here, a lower value for the kurtosis of the

year 2016 indicates a less peaked version of the probability density function, compared to

the ones of 2017 and 2018.

Table 2: Summary statistics of closing prices per year

YEAR COUNT MEAN STD MIN MAX SKEWNESS KURTOSIS

2016 202022 1.105855 0.026543 1.035300 1.113395 1.16126 -0.833590

2017 124940 1.106802 0.047312 1.034335 1.089155 1.20893 0.585335

2018 66003 1.184923 0.037221 1.121840 1.171865 1.25546 0.284131

 15

4.2.3 Differentiating

When performing time series analysis on financial data, the prices are rarely used as

inputs for the concerned model. This is due to the non-stationary characteristics of the

price over time. Instead, the differenced time series, i.e. the time series of the changes in

price, is used. Figure 4 shows a plot of the same data, but now in differences. From this

figure can be seen that the volatility is higher in 2016 than in e.g. 2018. In addition, we

can see that the search space is much different compared to the one we had with figure

3. The differenced time series helps us to try and find different patters than the trend in

figure 3.

Figure 4: Differentiated closing price per year

Table 3 shows some basic statistics of the time series in differences. One statistic that

stands out compared to the statistics of the undifferentiated time series, is the kurtosis.

The much higher value is due to the inherent characteristic that differenced time series

are much spikier because of the elimination of the trend.

Table 3: Summary statistics of differentiated closing prices per year

YEAR COUNT MEAN STD MIN MAX SKEWNESS KURTOSIS

2016 202021 -1.682003E-07 0.000235 -0.010185 0.006920 -0.705251 69.629981

2017 124939 1.183578E-06 0.000240 -0.006380 0.014815 1.954202 135.982658

2018 66002 -9.470168E-07 0.000343 -0.003370 0.003890 0.101151 2.777154

4.2.4 Train/test split

The training set will consist out data from years 2016 and 2017, while the test set will be

the data from 2018. This gives a test set of 66000 instances, which is about 17% of our

available data.

 16

4.3 Choosing a Model and Architecture

As concluded in the literature review, two types of deep learning architectures are

currently perceived as state-of-the-art for financial time series prediction: CNNs and

LSTMs. That is why those 2 architectures will be considered in this research.

4.3.1 Convolutional Neural Networks

The structure of our CNN will consist of different one-dimensional convolutional layers,

followed by a flatten layer, that flattens the data to a one-dimensional array. Next, two

fully connected layers are added that give a number of outputs, based on the forecasting

horizon, which can predict a movement in price.

4.3.2 Long Short-Term Memory

The architecture of our LSTM model consists of several LSTM blocks, followed by two

fully connected layers, resulting a number of outputs, again reflecting the movements in

price for our forecasting horzion. As an LSTM block can ‘forget’, the addition of extra

blocks is not harmful for the quality of the predictions. Note that this was not the case for

the architecture of the CNNs discussed above.

4.4 Training the Model

Both the LSTM and CNN models are trained on the differentiated time series data of

2016 and 2017. Twenty percent of the training data is left out as a validation set. This

data will act as a way of checking whether the initial 80% of the data is overfit or not.

When training our models, some Deep Learning techniques such as early stopping,

dropout and batch normalization were used. For a more in-depth explanation on these

approaches, chapter 3 can be consulted.

4.4.1 Input features

In table 4, an overview of the four different input features sets can be found. In set A, only

the closing prices will be used to predict closing prices in the future. Set B expands on

this by adding the high and the low for each tick bar. In set C, the closing price will be

used together with moving averages of length 5, 10 and 20. Lastly, set D will combine all

features together.

Figure 5: Representation of CNN model

Figure 6: Representation of LSTM model

 17

Table 4: Overview of input feature sets

INPUT FEATURE SET A SET B SET C SET D

CLOSE X X X X

HIGH X X

LOW X X

MOVING AVERAGE 5 X X

MOVING AVERAGE 10 X X

MOVING AVERAGE 20 X X

4.5 Evaluating the model

Knowing whether these above-mentioned performance metrics are good or not is hard to

say based on the values itself. That is why the performance of the different models will be

benchmarked against the performance of two different persistence models and an Auto

Regressive Integrated Moving Average model (ARIMA). This benchmark will be done for

the data of 2018, based on some performance measures.

In time series analysis, 5 performance measures are commonly used: mean absolute

error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root

mean squared error (RMSE) and R² (RSQ). A full discussion for these metrics can be

found in Hanke and Reitsch (1998) and Pindyck and Rubinfeld (1998). However, when

comparing a CNN model trained on the differenced time series against a price-based

persistence model, a transformation must be done, before a performance metric such as

the MAPE can be used, as this metric uses the percentage-wise errors.

4.5.1 Persistence model

The first kind of benchmark model used to test the performance of our Deep Learning

models, is the persistence model. Both its variants, price-based and difference-based,

are explained in the previous chapter.

 18

4.5.2 ARIMA model

The second type of benchmark model is the ARIMA model. The process for choosing the

appropriate ARIMA model consist of starting with a less complex model and gradually

increasing the number of parameters. While doing so, the Aikaike Information Criteria

(AIC) is used as a goodness of fit measure. The lower this value, the better the goodness

of fit. An indication of the order for the AR and MA component can be indicated by the

Autocorrelation function (ACF) and the Partial Autocorrelation function (PACF).

However, as can be seen from the first set of the ACF and PACF, interdependencies

occur between the autocorrelations. This can be resolved by taking the first order

differences of the time series (I component of 1) and consequently plotting the same two

functions. This conclusion can be backed by the test statistic score of 0.817 of the

augmented dickey fuller test (Dickey & Fuller, 1979) which clearly does not reject the null

hypothesis of a unit root and thus, indicates that the time series is not stationary. Note

that these plots are made based on the closing price of the 610-tick bars, but the same

conclusion could be drawn for the different aggregated tick bars.

Figure 7: ACF and PACF for closing price of the 610-tick bars

When taking the first differences of the previous mentioned time series, an augmented

Dickey-Fuller test now clearly shows that the time series is stationary with a test statistic

of 7.96.10e-30. The second set of plots now shows the ACF and the PACF of the

differenced time series. Whereas the previous set of plots showed some very high

correlations due to the trend, this is no longer the case. This might indicate that the

obtained ARIMA models will not be as significant as hoped for. Table X and X below

show an overview of the different tested orders and their AIC-value. Note that an

augmented Dickey-Fuller test was performed on the residuals of any given model and

that the conclusion was identical for every model, confirming the validity of the

constructed models.

 19

Figure 8: ACF and PACF of the closing price of the 610-tick bars after taking first differences

As can be seen in the two tables below, the lowest AIC was obtained by the ARIMA-

model of order (0,1,2) for the 610-tick bars and order (1,1,1) for the 2584-tick bars. For

more information on this model, McKenzie (2010) can be consulted. Furthermore, the

residuals behaved like a random walk, which was backed by the Dickey-Fuller test score.

Nau (2014) and Armstrong et al. (2015) confirmed that the orders of the AR and MA

component of an ARIMA should be kept quite small, which backs the low-order models

used during this research.

Table 5: AIC values for different order ARIMA models

610-TICK BARS 2584-TICK BARS

ORDER AIC ORDER AIC

(1,1,0) -4530815.72 (1,1,0) -962646.50

(0,1,1) -4530817.71 (0,1,1) -962647.46

(0,1,2) -4530872.20 (0,1,2) -962650.00

(1,1,1) -4530863.42 (1,1,1) -962652.10

(2,1,1) -4530869.89 (2,1,1) -962647.61

(3,1,1) -4530867.88 (3,1,1) -962648.08

(1,1,2) -4530870.30 (1,1,2) AR- COMPONENT IS NOT
STATIONARY

(2,1,0) -4530871.86 (2,1,0) -962649.52

4.6 Tuning the hyperparameters

When working with deep learning techniques, the performance of the models also relies

on the correct choice of hyperparameters. One way to deal with this choice, is by running

a grid search. This test different pre-defined combinations of hyperparameters for a small

number of iterations (epochs). The most promising values are then chosen to be included

in the final model.

 20

Table 6: Tune grid for the CNN and LSTM

CNN LSTM

PARAMETER GRID SEARCH VALUES PARAMETER GRID SEARCH VALUES

FILTERS 16, 32, 64, 128 # LSTM UNITS 5, 10, 20 ,50

KERNEL SIZE 2, 4, 8, 16 DROPOUT RATE 0.05, 0.10, 0.20

NODES IN DENSE
LAYERS

20, 50, 100 # NODES IN DENSE
LAYERS

20, 50, 100

CONVULUTIONAL
LAYERS

1, 2, 3 / /

HIDDEN DENSE
 LAYERS

1, 2, 3 # HIDDEN DENSE
 LAYERS

1, 2, 3

OPTIMIZER ADAM, ADAGRAD, ADADELTA OPTIMIZER ADAM, ADAGRAD, ADADELTA

LEARNING RATE 0.001, 0.01, 0.1, 0.15, 0.2, 0.3 LEARNING RATE 0.001, 0.01, 0.1, 0.15, 0.2, 0.3

During this project, several grid searches have been performed in order to find optimal

values for hyperparameters such as the learning rate, the optimal number of neurons in

the first fully connected layer, or even the specific built of the convolutional layers or

LSTM blocks. Table 6 summarizes the tune grids for both models. When performing the

grid search, a standard stratified 3-fold cross validation was used. Based on the mean

and the standard deviation of these results, the optimal set of hyperparameters were

chosen.

4.7 Making Predictions

4.7.1 One step ahead

The final step in the process discussed by Yufeng (2017) consists of the deployment of

the model or the actual predictions as he calls it. This means that a model can be

implemented on real time data. Therefore, the validity of the training and test data must

be true. This means, that at the time of prediction, all data concerning that prediction

should be known and that the prediction interval is large enough for predictions to be

made and implemented. In this case, a prediction can be made every batch of ticks,

depending on which model that is being used. At that point in time, the aggregated

groups of ticks are then used to predict the average closing price of the next batch of

ticks. This can offer guidance in determining the trend by looking at the difference

between the predicted value and the closing price of the last batch ticks.

 21

4.7.2 Multiple step ahead

Another way to tackle this problem, is to perform a multiple step ahead forecast. In this

case, multiple timepoints are predicted at once. Here, the intuition is that a possible

upward or downward trend can be revealed over a longer period of time. This is

particularly referring to the Deep Learning models, as the naïve approaches are not that

appropriate for this task. During this thesis, a 5-step ahead forecast was used to test the

relevancy of our models.

 22

5 Results

Throughout this chapter, the results of all models will be reported individually. The

discussion and comparison of these results will be done in chapter 6. The assessment of

the models will be based on the MSE.

5.1 One-step forecasting

Here, we will briefly summarize the main results for the one-step ahead case. An

overview of the results can be found in table 6.

5.1.1 Persistence model

5.1.1.1 Price-based

In figure 9, it can be seen that the predicted values are equal to the true values with a lag

of one period. This is the most simple and naïve model and acts purely as a baseline. For

the tick bars of size 610, an MSE of 1.176E-07 was found, while the 2584 sized tick bars

showed an MSE of 4.742E-07.

Figure 9: A sample of the true and predicted values for the price-based persistence model

5.1.1.2 Difference-based

Figure 10 demonstrates a sample of the predictions versus actuals in the case of a

difference-based persistence model. Here as well, the model purely serves as a baseline.

An MSE of 2.392E-07 and 9.591E-07 was obtained for the tick bars of size 610 and 2584

respectively.

 23

5.1.2 ARIMA

5.1.2.1 610 ticks

A third and final benchmark model which was constructed is the ARIMA. As shown in the

methodology, section 4.5.2, the order for the 610-tick model was decided to be (0,1,2),

where the MA-components have a value of respectively -1.537E-2 and -1.333E-2. Figure

11 plots the predictions versus actuals. Note that the similarity to the plot of the price-

based persistency model can be explained by the absence of the AR- component and the

small values for both Ma-components.

Figure 11: A sample of the true and predicted values for the ARIMA model

The MSE for this one-step ARIMA models was found to be 1.180E-07 and 4.740E-07.

Figure 10: A sample of the true and predicted values for the difference-based persistence
model

 24

5.1.2.2 2584 ticks

As was already mentioned, the order for the 2584-tick ARIMA model was decided to be

(1,1,1), where the AR-component has a value of 2.575E-1 and the MA-component a

value of 2.859E-1. Figure 12 shows the predictions versus actuals. Even though both

components have at least one value, the plot still doesn’t show any significant

predictions, due to the fitted parameters to be so small.

Figure 12: A sample of the true and predicted values for the ARIMA model

The MSE for this one-step ARIMA models was found to be 4.740E-07.

5.1.3 CNN

5.1.3.1 610 ticks

MSE for set-up A, B, C and D are respectively 1.178E-07, 1.196E-07, 1.180E-07, 1.300E-

07. It is noteworthy to mention that for all of the set-ups, the CNN predicts a small

constant value for the whole test set. Therefore, as can be seen in figure 13, the results

look very similar to the results of the persistence model, something which will be further

discussed in the next chapter.

 25

Figure 13: A sample of the true and predicted values for the CNN model – 610 ticks

5.1.3.2 2584 ticks

In contrast to the effect of constant predictions for the tick bars of size 610, the CNN

resulted in a model which actually did make some interesting predictions. However, the

MSE for the different set-ups are found to be higher than for the price-based persistence

model: 5.749E-07 for set-up A, 6.224E-07 for set-up B, 5.155E-07 for set-up C, and

6.465E-07 for set-up D. Figure 14 demonstrates a sample of the true and predicted

prices.

 26

Figure 14: A sample of the true and predicted values for the CNN model – 2584 ticks

5.1.4 LSTM

5.1.4.1 610 ticks

Same as for the CNN, the LSTM predicts here a very small (nearly) constant value. The

MSE’s are respectively 1.176E-07, 1.194E-07, 1.416E-07, and 1.234E-07 for the different

set-ups. A plot would be comparable to figure 13.

5.1.4.2 2584 ticks

In this case, the MSE’s are respectively 4.745E-07, 4.745E-07, 4.753E-07, and 4.746E-

07. The LSTM applied on the tick bars of size 2584 resulted in predictions which are not

constant over time, though very small compared to the actuals. This will be further

discussed during the next chapter.

5.2 Multi-step predictions

The results for each model and set-up for the multi-step prediction case can be found in

table 6. These results will be discussed throughout the next chapter.

Table 7: Overview of results MSE

 ONE-STEP MULTI-STEP (5)

MODEL SET-UP 610 TICKS 2584 TICKS 610 TICKS 2584 TICKS

 27

PERSISTENCE PRICE A 1.176E-07 4.742E-07 2.367E-07 1.396E-06

PERSISTENCE DIFF A 2.392E-07 9.591E-07 4.653E-07 1.885E-06

ARIMA A 1.180E-07 4.740E-07 3.390E-07 1.396E-06

CNN A 1.178E-07 5.749E-07 3.430E-07 1.452E-06

B 1.196E-07 6.224E-07 3.437E-07 1.454E-06

C 1.180E-07 5.155E-07 3.434E-07 1.523E-06

D 1.300E-07 6.465E-07 3.429E-07 1.443E-06

LSTM A 1.176E-07 4.745E-07 3.412E-07 1.396E-06

B 1.194E-07 4.745E-07 3.434E-07 1.397E-06

C 1.416E-07 4.753E-07 3.430E-07 1.400E-06

D 1.234E-07 4.746E-07 3.476E-07 1.400E-06

 28

6 Discussion

In table 6, the MSEs for the different models and set-ups can be found. Based on this

metric, it seems that both the CNN and LSTM did not manage to learn valuable

information in order to predict future values. Below, a closer look is taken at the

predictions of the fitted models.

One remarkable effect that could be observed when using tick bars of size 610 is that the

predictions, both for the CNN as for the LSTM, are a constant value. This effect was first

observed in the setting of one-step ahead forecasting, after which the decision was made

to increase the complexity of the set-up. However, as can be seen in figure 15, the effect

did not change.

Figure 15: Example of the constant predictions - 610-tick bars

One possible explanation for why these predictions are constant, might be the granularity.

By aggregating the data to 610-tick bars, the initial correlation between the adjacent

closing prices on tick-by-tick basis are lost. This decision, however, was made to

differentiate our approach to the approach of HFT as discussed by Gomber & Haferkorn

(2013). However, when aggregating even further, some of the (unexplainable) volatility is

eliminated, which might cause our models to perform better.

Therefore, the decision was made to look into forecasting with lower granularities, i.e.

more ticks included per bar, by constructing 2584-tick bars. These delivered some useful

predictions, which will now be discussed one by one.

 29

6.1 CNN

Even though the MSE’s for every CNN input feature set is worse than for the naïve

baseline model, it seems like the model did learn to recognize some patterns. Figure 16

demonstrates the predicted differences versus actuals for the CNN.

Figure 16: A sample of the predicted differences vs. actuals for the CNN – 2584-tick bars

This might at first not look like trustworthy predictions but could in fact give a robust

forecast when applied on bigger timespans.

When comparing the performance between the different sets of input features, we can

observe a slightly better result for input feature set C, where moving averages are taken

into account.

6.2 LSTM

Overall, the LSTM seemed to perform better compared to the CNN in terms of MSE. The

predictions, however, are again significantly smaller – but not constant. This can be

observed in figure 17 and 18, where only the predicted differences are plotted, and then

put into perspective by adding the actual values.

 30

Figure 17: A sample of the predicted differences for the LSTM – 2584-tick bars

Figure 18: the predictions for the LSTM put into perspective

Although these predictions are not that significant compared to the actual differences,

these predictions might contain some useful information regarding the sign of the

forecasted differences, i.e. whether price will go up or down. This, however, is something

that still needs to be investigated. Additionally, the non-constant learned outputs might

suggest that something can be learned from the training data or that some patterns might

be hidden in the data.

 31

6.3 Comparison and remarks

Overall, it can be seen that input feature set A, which only uses the closing price as input

feature, is in most cases the best performing. This result was quite surprising, since we

expected the lows and highs of closing prices (set B), or the moving averages (set C) to

contain additional information that could increase the performance of the model. In

contrast, with the results obtained, it is not possible to conclude such statements. In fact,

if we only look at MSE, we would have to conclude that the simplest model in most cases

performs best.

Moreover, it seems that both the CNN and LSTM did not manage to outperform a naïve,

price-based persistency model. However, the CNN did manage to learn some patterns

and make significant predictions, while the LSTM did find some small values for the

predicted differences. The exact reason for the significant differences in outcomes

between the between the CNN and LSTM is still unclear. It would be interesting to see

what would happen with the outcomes once the granularity is decreased somewhat more.

As we observed it, both the LSTM and CNN resulted in more valuable predictions after

decreasing the granularity and increasing the number of steps predicted ahead. This is,

as we believe, where deep learning starts to look more promising for predicting forex time

series.

 32

7 Conclusions

We set out to fill the research gap concerning the application of deep learning on intraday

forex rates. To that end, we constructed two models based on state-of-the-art machine

learning techniques for time series and compared their performance with both a naïve

and a traditional approach. Our results suggest that predicting intraday forex returns,

without scalping slight profits in huge volumes (i.e. high-frequency trading according to

Gomber & Haferkorn, 2013), remains a challenging task. More specifically, we found that

both a CNN and an LSTM did not manage to outperform a naïve model. In addition, the

obtained results are not able to prove that adding additional informative input features

would improve the predictive performance. To this extent, we found that our univariate

models, which only take closing prices as an input, often perform better than their

multivariate versions which took lows and highs or moving averages into the set of input

features. Lastly, we found that lowering the granularity of input data and increasing the

number of steps predicted ahead is beneficial for the usefulness of predictions based on

our deep learning models.

There are three additional things that could be tried in order to improve our models.

Firstly, the models could be fitted for larger forecast horizons and lower granularity of

input data. Secondly, it would be interesting to see what the effect is of using time bars

instead of tick bars. And thirdly, it might be possible that increasing the complexity of the

models could improve performance, in the hope that the increased complexity would be

able to detect certain patterns which our models were not able to find.

Overall, the usefulness of Deep Learning to predict intraday foreign exchange rates has

not been proven yet. Therefore, it would not be beneficial thus far to construct a trading

robot for this task. However, when expanding the forecast horizon and lowering the

granularity of the tick bars, the deep learning approaches start to seem more valuable.

This would be an interesting path for future research.

An important question to be answered in future research is whether our conclusion

remains valid on other currency pairs, or whether adding other informative data such as

bond yields would increase the performance of intraday predictive models.

 33

Appendices

Appendix 1: Daily net revenues of Goldman Sachs in 2017

Daily net revenues of Goldman Sachs in 2017 (Goldman Sachs 2017 Form 10-K, p.95)

 34

Sources

Ahmed, N., Atiya, A., El Gayar & N., El-Shishiny, H. (2010). An empirical comparison of

machine learning models for time series forecasting. Econometric Revieuws, Vol. 29, Ro.

5-6, pp. 594-621.

Armstrong, J & Green, Kesten & Graefe, Andreas. (2015). Golden Rule of Forecasting:

Be Conservative. SSRN Electronic Journal. 10.2139/ssrn.2643546.

Bao W, Yue J, Rao Y (2017) A deep learning framework for financial time series using

stacked autoencoders and long-short term memory. PLoS ONE 12(7): e0180944.

https://doi.org/10.1371/journal.pone.0180944

Borovykh, A. W., Bohte, S., & Oosterlee, C. (2017). Conditional time series forecasting

with convolutional neural networks. Lecture Notes in Computer Science (including

Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 10614, 729-730.

Brock, W. A., D. A., Hsieh, and B. LeBaron. 1991. Nonlinear dynamics, chaos, and

instability. Cambridge, Mass.:MIT Press.

Brooks C (1996) Testing for non-linearity in daily sterling exchange rates. Appl Financ

Econ 6(4): pp 307–317. doi:10.1080/096031096334105

Chiarella C, Peat M, Stevenson M (1994) Detecting and modelling nonlinearity in flexible

exchange rate time series. Asia Pac J Manag 11(2):159–186. doi:10.1007/BF01739197

Claesen, M., & De Moor, B. (2015). Hyperparameter Search in Machine Learning.

Cont, R, Empirical properties of asset returns: Stylized facts and statistical issues, (2001)

Deng S, Yoshiyama K, Mitsubuchi T, Sakurai A (2015) Hybrid method of multiple kernel

learning and genetic algorithm for forecasting short-term foreign exchange rates. Comput

Econ 45(1):49–89. doi:10.1007/s10614-013-9407-6

De Grauwe, P., H. Dewachter, and M. Embrechts. 1993. Exchange rate theory. Chaotic

models of foreign exchange markets. London: Blackwell.

Dickey, D., & Fuller, W. (1979). Distribution of the Estimators for Autoregressive Time

Series With a Unit Root. Journal of the American Statistical Association, 74(366), 427-

431.

Dunis, C. & Williams, M. (2002). Modelling and trading the euro/US dollar exchange rate:

Do neural network models perform better?, Derivatives use, trading and regulation.

Vol.8(3), pp.211-239

Etzkorn, M. & Schwager, D., (2016). A Complete Guide to the Futures Market:

Fundamental Analysis, Technical Analysis, Trading, Spreads and Options. Somerset :

John Wiley & Sons, Incorporated.

 35

Fang, H., K. S. Lai, and M. Lai. 1994. Fractal structure in currency futures price dynamics.

Journal of Futures Markets 14:169±181.

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for

financial market predictions. European Journal of Operational Research, 270(2), 654-669.

doi:10.1016/j.ejor.2017.11.054

Folger, J. (2013) A closer look at price chart choices. Futures, Vol.42(7), pp.30-32

Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to Forget: Continual

Prediction with LSTM. Neural Computation, 12(10):2451–2471

Giles, C. L., Lawrence, S., Tsoi, A. C., 2001. Noisy time series prediction using recurrent

neural networks and grammatical inference. Machine learning 44 (1), 161-183.

Gomber, P., & Haferkorn, M. (2013). High-Frequency-Trading. Business & Information

Systems Engineering, 5(2), 97-99.

Gooijer, J. G., & Hyndman, R. J. (2006). 25 years of time series forecasting. International

Journal of Forecasting, 22(3), 443-473. doi:10.1016/j.ijforecast.2006.01.001

Hamilton, J. D. (1994) Time series analysis, vol. 2, Princeton university press Princeton.

Heaton, J., Polson, N., & Witte, J. (2016). Deep Learning for Finance: Deep Portfolios.

SSRN Electronic Journal. doi:10.2139/ssrn.2838013

Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., & Dos Reis Alves, S. F..

(2017). Artificial Neural Networks: A Practical Course. Cham: Springer International

Publishing : Imprint: Springer.

Joseph, A., Larrain, M., & Singh, E. (2011, 1 1). Predictive Ability of the Interest Rate

Spread Using Neural Networks. Procedia Computer Science, 6, 207-212.

Kipruto, G., Mung’atu,J., Orwa, G. & Gathimba, N. (2018). Application of Artificial Neural

Network (Ann) in Modeling Foreign Currency Exchange Rates. International Journal of

Scientific Research and Management. 6.

Liu, C., Hou, W., & Liu, D. (2017, 12). Foreign Exchange Rates Forecasting with

Convolutional Neural Network. Neural Processing Letters, 46(3), 1095-1119.

Lopez de Prado, M. (2018) Advances in financial machine learning. New Jersey: Wiley.

McKenzie, E., Gardner, E. (2010). Damped trend exponential smoothing: A modelling

viewpoint. International Journal of Forecasting. 26(4), 661-665.

Mehta, M. (1995), ‘Foreign Exchange Markets’, 176-198, in A. N. Refenes [ed.], Neural

Networks in the Capital Markets, John Wiley, Chichester.

Pacelli, V., Bevilacqua, V., & Azzollini, M. (2011). An Artificial Neural Network Model to

Forecast Exchange Rates. Journal of Intelligent Learning Systems and Applications,

03(02), pp 57-69. doi:10.4236/jilsa.2011.32008

 36

Pascanu, R., Mikolov, T., & Bengio, Y. (2012). Understanding the exploding gradient

problem. CoRR, abs/1211.5063, 2.

Prechelt, L. (2012). Early stopping - But when? Lecture Notes in Computer Science

(including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 7700, 53-67.

Sattler, K.-U., Schallehn, E. (2001). A Data preparation framework based on a

multidatabase language. Proceedings of the International Symposium on Database

Engineering & Applications, pp. 219–228.

Srivastava, N. et al., 2014. Dropout: A Simple Way to Prevent Neural Networks from

Overfitting. Journal Of Machine Learning Research, 15, pp.1929–1958.

Taylor, S. J. 1986. Modelling financial time series. New York: Wiley

Tenti, P. (1996) Forecasting foreign exchange rates using recurrent neural

networks, Applied Artificial Intelligence, 10:6, 567-582, DOI: 10.1080/088395196118434

Tsai, Y., Chen, J. & Wang, J. (2018). Predict Forex Trend via Convolutional Neural

Networks. Journal of Intelligent Systems, 0(0), pp. -. Retrieved 13 Apr. 2019, from

doi:10.1515/jisys-2018-0074

Internet

Brownlee, J., (2016, December 26). How to Make Baseline Predictions for Time Series

Forecasting with Python Retrieved from https://machinelearningmastery.com/persistence-

time-series-forecasting-with-python/

Burns, S., (2018, May 10). 15 Interesting Facts About the Forex Market – Infographic.

New Trader U, Retrieved from http://www.newtraderu.com/2018/05/10/15-interesting-

facts-about-the-forex-market-infographic/

CME Institute (sd). Understanding Futures Expiration & Contract Roll. CME Group,

Retrieved from https://institute.cmegroup.com/courses/introduction-to-futures-

html/modules/understanding-futures-expiration-contract-roll

Gardner, E. & McKenzie, E. (2009, October 22). Why the damped trend works. Retrieved

from https://www.bauer.uh.edu/gardner/docs/pdf/Why-the-damped-trend-works.pdf

Kumar, N. (2017, December 5). How AI will invade every corner of Wall Street.

Bloomberg, Retrieved from https://www.bloomberg.com/news/features/2017-12-05/how-

ai-will-invade-every-corner-of-wall-street

Nau, R. (2014, October 30). Notes on nonseasonal ARIMA models. Retrieved from

http://people.duke.edu/~rnau/Notes_on_nonseasonal_ARIMA_models--Robert_Nau.pdf

Turner, M. (2016, January 21). Goldman Sachs: We’re investing deeply in artificial

intelligence. Business Insider, Retrieved from http://uk.businessinsider.com/goldman-

sachs-investing-in-artificial-intelligence-2016-1?IR=T&r=US

https://machinelearningmastery.com/persistence-time-series-forecasting-with-python/
https://machinelearningmastery.com/persistence-time-series-forecasting-with-python/
http://www.newtraderu.com/2018/05/10/15-interesting-facts-about-the-forex-market-infographic/
http://www.newtraderu.com/2018/05/10/15-interesting-facts-about-the-forex-market-infographic/
https://institute.cmegroup.com/courses/introduction-to-futures-html/modules/understanding-futures-expiration-contract-roll
https://institute.cmegroup.com/courses/introduction-to-futures-html/modules/understanding-futures-expiration-contract-roll
https://www.bauer.uh.edu/gardner/docs/pdf/Why-the-damped-trend-works.pdf
https://www.bloomberg.com/news/features/2017-12-05/how-ai-will-invade-every-corner-of-wall-street
https://www.bloomberg.com/news/features/2017-12-05/how-ai-will-invade-every-corner-of-wall-street
http://people.duke.edu/~rnau/Notes_on_nonseasonal_ARIMA_models--Robert_Nau.pdf
http://uk.businessinsider.com/goldman-sachs-investing-in-artificial-intelligence-2016-1?IR=T&r=US
http://uk.businessinsider.com/goldman-sachs-investing-in-artificial-intelligence-2016-1?IR=T&r=US

 37

UNITED STATES SECURITIES AND EXCHANGE COMMISSION: Form 10-K. Goldman

Sachs, Retrieved from https://www.goldmansachs.com/investor-

relations/financials/current/10k/2017-10-k.pdf

Vonko, D. (2019, January 24). Understanding Fibonacci Numbers and Their Value as a

Research Tool. Investopedia, Retrieved from

https://www.investopedia.com/articles/trading/06/fibonacci.asp

Yufeng, D. (2017, August 31). The 7 Steps of Machine Learning. Towards Data Science,

Retrieved from https://towardsdatascience.com/the-7-steps-of-machine-learning-

2877d7e5548e

https://www.goldmansachs.com/investor-relations/financials/current/10k/2017-10-k.pdf
https://www.goldmansachs.com/investor-relations/financials/current/10k/2017-10-k.pdf
https://www.investopedia.com/articles/trading/06/fibonacci.asp
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e
https://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548e

FACULTY OF BUSINESS AND ECONOMICS
Naamsestraat 69 bus 3500

3000 LEUVEN, België
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

