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1 Introduction 

Time series forecasting is the practice of applying models on past observations to predict 
values in the future and is currently one of the most actively used data science methods 
in business. Popular applications can be found in supply chain management, inventory 
planning or sales predictions, but also for different applications such as in weather 
forecasting or for earthquake prediction. Yet another field that has received great 
attention in the past, is the forecasting of financial time series. 

Within the trade industry, predictive models have been used to help make investment 
decisions with the aim of increasing risk adjusted profits. However, there has been a lot of 
doubt about making profits off predictive models. According to the efficient market 
hypothesis (EMH), financial markets reflect all available information perfectly, which 
makes forecasting in essence useless. In practice, markets are not fully efficient though, 
making forecasting techniques that are able to capture specific patterns beneficial. 
Moreover, investment banks such as Goldman Sachs have proven to be profitable on a 
consistent basis. A figure which shows the daily net revenues for all Goldman Sachs’ 
trading days of 2017 can be found in Appendix 1. A similar distribution is noticeable when 
inspecting other years. Things like this explain why many judge the EMH to be incorrect. 

Although some market-specific characteristics of e.g. the stock market might not support 
the EMH theory, the spot currency market is still considered to be one of the most 
efficient markets. With its average daily trading volume of about 5.3 trillion USD (Burns, 
2019), which greatly exceeds the volume of the New York Stock Exchange, this market 
has one of the highest liquidities. Whereas other markets trade stocks of a certain 
company of the ownership of a certain commodity, this market is focussed on the 
exchange of one currency into another, e.g. euro to American dollar. Although this market 
serves as a way of ensuring profits for international companies by buying pull- or call-
options for a certain currency pair, 90% of forex trading is of speculative nature (Burns, 
2019). 

For a long time, researchers and traders have had contradicting views on the 
characteristics of this market. On the one hand, traders believed that past prices and 
technical indicators could be used to set up mechanical trading systems. This would then 
enable them to achieve simple profits with a relative low risk. In academia, on the other 
hand, many researchers have supported the idea that past movements could not be used 
to predict future prices. This idea was backed by evidence supporting the random walk 
hypothesis, meaning that differences in exchange rates have the same distribution as a 
random walk and are therefore independent of each other. Over the last few decades, 
however, with the emergence of nonlinear dynamics, strong evidence suggests that 
exchange rates returns are not independent of each other. Even though there might be 
little linear dependence, many researches have shown the existence of nonlinear 
correlations in the currency market (Tenti, 1996). 

As mentioned by Borovykh, Bohte and Oosterlee (2018), it is now clear that temporal 
relationships in foreign exchange rates exist, although they remain difficult to analyse and 
predict due to the relatively high degree of noise and non-linear trends in the series 
(Cont, 2001). In the last years, however, machine learning techniques, and more 
specifically the use of deep learning, have proven to be capable of identifying this kind of 
nonlinear patterns in financial data (Fischer and Krauss, 2017). 

In various fields, Deep Learning has known successful applications. From tools such as 
Google Translate and the reference-based system of Netflix, and not to mention object 
detection algorithms and the use of deep learning in digital marketing and robotics. With 
the huge increase of computational power and storage of data over the last few decades, 
the number of applications of artificial intelligence has only be increasing. Even in 
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finance, investments in AI by hedge fund companies such as Renaissance, Citadel and 
BlackRock have surged with around 90% to 940 billion USD in the last decade (Kumar, 
2017). Does this mark a bright future for AI in finance? 

In this paper, we will focus on applying different deep learning architectures to predict 

intraday foreign currency exchange movements. More specifically, we will investigate the 

performance on the prediction of Forex data of two state-of-the-art deep learning 

algorithms (i.e. CNN and LSTM) and benchmark their performance against a naïve model 

and a traditional forecasting method (i.e. ARIMA). 

By doing this, mainly three contributions will be made to the current literature on deep 
learning for forex predicting. First of all, novel Deep Learning algorithms will be 
constructed, and their performance will be compared to more conventional methods for 
forex trading. Even though there already exists relevant literature, the amount of useful 
works is rather scarce. Besides the fact that useful literature on forex prediction is limited, 
we are also motivated by the idea that forecasting foreign exchange rates is seen as an 
important work. As mentioned by Deng, Yoshima, Mitsubuchi, & Sakurai (2015), it is not 
only important for investors looking to increase their profits, but also for policy-makers 
and entrepreneurs. Secondly, to the best of our knowledge, this is the first work to show 
the application of deep learning models to forecast intraday movements of foreign 
exchange rates, which might be interesting to investigate as correlations between data 
points are stronger on an intraday basis. And thirdly, as far as we know, this research is 
the first to show the effects on model performance of adding different input features such 
as moving averages and lows and highs of prices, compared to univariate forecasting. 

The remainder of this paper is organized as follows. In section 2, the most relevant 
existing literature will be discussed. Section 3 will then cover the models used throughout 
this paper and a few theoretical aspects that were implemented along. Section 4 covers 
our experimental setup and the implementation, including data collection, data 
preparation, followed by model selection, training, evaluation, finetuning, and prediction. 
In section 5, the obtained results will be presented, followed by a discussion of these 
results in section 6. Lastly, section 7 will state our conclusions, limitations and 
recommendations for further research. 
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2 Literature review 

In 1996, Tenti compared the performance of three recurrent architectures applied on the 

Deutsche mark and showed that even though the training time is long, recurrent neural 

networks (RRNs) are very useful for financial forecasting. One problem with RRNs, 

however, is that long-term dependencies tend to be neglected. Giles, Lawrence & Tsoi 

(2001) addressed this problem by using a self-organizing map with RNNs, a method 

which is nowadays known as long short-term model (LSTM). Their model was also 

applied on forex data to predict the direction of change for the next business day and they 

managed to obtain an accuracy close to 60% when dropping examples with low 

confidence. 

Dunis and Williams (2002) evaluated neural network regression (NNR) models and 

benchmarked them against traditional techniques (moving average, logit and ARMA) in 

forecasting and trading EUR/USD. Even though their NNR model outperformed the 

traditional models, none of the models achieved a 60% accuracy in predicting a future 

price movement.  

Ashok and Mitra (2002) proposed a hybrid model based on an ANN which uses a Genetic 

Algorithm (GA) for optimizing the parameters. Their model outperformed a set of 

conditional heteroskedastic models (such as ARCH, GARCH, and GARCH-M) applied on 

the major internationally traded daily foreign currencies. In the paper of Pacelli and 

Bevilacqua (2010) a similar approach was used to forecast EUR/USD exchange rates. 

Here, however, the model was benchmarked against other (non-optimized) ANNs. Both 

papers used a model with 2 hidden layers and measured the performance with different 

metrics such as mean average percentage error (MAPE), mean squared error (MSE) and 

R-square (RSQ). 

For a large-scale comparison between different machine learning models, we refer to 

Ahmed, Atiya, Gayar and El-Shishiny (2010). In this paper, the authors evaluated eight 

different techniques applied on the monthly M3 time series competition data (a set of 

almost 1500 different time series, of which 145 related to finance) and concluded that the 

MLP was in most cases the best performing one. A great overview of more traditional 

models can be found in the paper by De Gooijer and Hyndman (2006). 

Kipruto, Mung’atu, Orwa & Gathimba (2018) used a NN to forecast exchange rates of the 

Kenyan currency (KES) against the USD, EUR, GPB and JPY. The authors used one 

hidden layer with a sigmoid activation function and an output layer with a linear transfer 

function. Then they evaluated the models based on the MAE, MAPE and RMSE. 

A more complex set-up was studied by Bao, Yue & Rao (2017). They presented a deep 

learning architecture which consists of 3 stages and applied this on different stock 

indexes. First, the stock data is pre-processed using a wavelet transformation in order to 

get rid of the noise; Then, a stack of autoencoders (fully connected layers) is applied on 

the denoised data; and finally, the output is generated by a delayed LSTM. The authors 

decided to benchmark their model against a traditional RNN, an LSTM, and a WLSTM 

(combination of wavelet transform and LSTM) and measured their performance by three 

indicators: R, MAPE and Theil U. Based on the performance measures, the complex set-

up, as discussed above, seems to be quite promising on the prediction of daily closing 

prices of Forex data. 
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Borovykh, Bohte & Oosterlee (2018) created a similar wavelet architecture based on a 

convolution neural network (CNN). Their model is applied on different time series, 

including S&P500 and several exchange rates, and outperformed a vector autoregressive 

model (VAR) while competing with an LSTM. However, the training speed of their model 

is much faster than the one of the LSTM. In their paper, the recommendation was made 

to apply their model on intraday data, as the correlations between data points are 

stronger on an intraday basis. 

Another set-up to predict forex trends via CNN’s was proposed by Tsai, Chen & Wang 

(2018). In this paper, the raw quantitative data was first pre-processed into images. 

These images, containing price and moving averages (5, 10 & 20), were used to train 

several deep CNN architectures. The authors concluded, however, that none of their 

models produced the expected performance. 

In table 1, the literature discussed is summarized into an overview. Although most of the 

research papers mentioned above were not able to back up the applicability of Deep 

Learning Techniques on financial time series data, the more complex and recent models 

as discussed by Bao et al. (2017) and Borovykh et al. (2018), did show some promising 

results. However, the applicability of these models on intraday Forex data still needs to 

be investigated. Overall two set-ups seem to be the most promising for predicting 

financial time series: the LSTM, as discussed by Bao et al. (2017) and the CNN, as 

discussed by Borovykh et al. (2018). 

 

Table 1: Overview of literature 

SOURCE TITLE MODEL USED DOMAIN 

TENTI (1996) FORECASTING FOREIGN EXCHANGE RATES USING 
RECURRENT NEURAL NETWORKS 

RNN FOREX 

GILES, LAWRENCE & 
TSOI (2001) 

NOISY TIME SERIES PREDICTION USING RECURRENT 
NEURAL NETWORKS AND GRAMMATICAL INFERENCE 

RNN & SOM 
(LSTM) 

FOREX 

ASHOK & MITRA 
(2002) 

FORECASTING DAILY FOREIGN EXCHANGE RATES 
USING GENETICALLY OPTIMIZED NEURAL NETWORKS 

HYBRID: NN & 
GA 

FOREX 

DUNIS &  WILLIAMS 
(2002) 

MODELLING AND TRADING THE EUR/USD EXCHANGE 
RATE: DO NEURAL NETWORK MODELS PERFORM 
BETTER? 

NN FOREX: 
EUR/USD 

AHMED, ATIYA, EL 
GAYAR & EL-SHISHINY 
(2010) 

AN EMPIRICAL COMPARISON OF MACHINE LEARNING 
MODELS FOR TIME SERIES FORECASTING 

DIFFERENT 
ML MODELS 

TIME SERIES 
(M3 
COMPETITION) 

PACELLI & 
BEVILACQUA (2010) 

AN ARTIFICIAL NEURAL NETWORK MODEL TO 
FORECAST EXCHANGE RATES 

HYBRID: NN & 
GA 

FOREX: 
EUR/USD 

BAO, YUE & RAO (2017) A DEEP LEARNING FRAMEWORK FOR FINANCIAL TIME 
SERIES USING STACKED AUTOENCODERS AND 
LONGSHORT TERM MEMORY 

WSAES - 
LSTM 

STOCKS 

BOROVYKH, BOHTE & 
OOSTERLEE (2018) 

CONDITIONAL TIME SERIES FORECASTING WITH 
CONVOLUTIONAL NEURAL NETWORKS 

CNN FOREX, 
S&P500, … 

KIPRUTO, MUNG’ATU, 
ORWA & GATHIMBA 
(2018) 

APPLICATION OF ARTIFICIAL NEURAL NETWORK (ANN) 
IN MODELING FOREIGN CURRENCY EXCHANGE RATES 

NN FOREX: 
KENYAN (KES) 
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TSAI, CHEN & WANG 
(2018) 

PREDICT FOREX TREND VIA CONVOLUTIONAL NEURAL 
NETWORKS 

CNN FOREX 
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3 Methods for forex prediction 

In this section, we will briefly explain the theory behind the methods used throughout this 

paper. 

3.1 Traditional methods 

3.1.1 Persistence model (Naïve approach) 

The persistence model (Brownlee, 2016) is also known as the naïve forecasting strategy. 

This model only uses the most recent value of the time series to predict the value at the 

next step. We will distinguish between two different ways of implementing this model: 

price-based and difference-based. 

3.1.1.1 Price-based 

The first persistence model uses the series as-is to make predictions in the future, hence 

the name price-based. As one would expect a persistence model to behave, the 

predictions are made in a rathe naïve way: 𝑃̂𝑡+1 = 𝑃𝑡. 

The forecasted value, 𝑃̂𝑡+1 , is the predicting closing price for the next tick bar. When 

using a price-based persistence model, the forecasted value is equal to 𝑃𝑡 , the actual 

closing price at tick bar t. Note that this model assumes a constant price over time and 

thus always predicts that the time series will remain unchanged. Therefore, a trading 

strategy based on a price-based persistence model will never open a position. 

3.1.1.2 Difference-based 

Whereas a price-based persistence model works with the time series as-is, the 

difference-based model works with the time series in difference. Each timepoint then 

reflects the difference in price. Again, the predictions are done in a naïve way:  𝐷̂𝑡+1 = 𝐷𝑡. 

The forecasted value,  𝐷̂𝑡+1 , presents the predicted difference for the next tick bar. This is 

then computed by just taking the value of 𝐷𝑡, the actual differentiated closing price at tick 

bar t. Unlike the price-based persistence model, the price does not remain constant over 

time, but the difference does, this means that this model just uses the trend of the last 

two datapoints and extrapolates it for the forecasted horizon. Therefore, a trading 

strategy based on the difference-based persistence model, would rely on the presence of 

a trend-following characteristic of the Forex market.  

3.1.2 ARIMA model 

A widely used traditional forecasting model is the Auto Regressive Integrated Moving 

Average, or in short ARIMA. The ARIMA model has three components, the AR, which 

uses previous values as inputs, and MA component, which uses previous errors as 

inputs, and an extra component that defines the number of differentiations, being the I 
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component. These first two former components have been tuned based on the partial 

autocorrelation function (PACF) and the autocorrelation function (ACF). These two plots 

show an indication of the number of significant parameters for respectively the moving 

average (MA) and auto regressive (AR) components. For more information on the ARIMA 

model, Nau (2014) gives a quick run-through. 

3.2 Deep Learning methods 

3.2.1 Artificial Neural Networks (Multi-Layer Perceptron) 

Deep learning is a popular subject. However, before diving into the theory of the models 

implemented in this thesis, a foundation needs to be built. The simplest deep learning 

model is called a Multi-Layer Perceptron (MLP). This architecture consists of at least 

three layers: an input layer, one or multiple hidden layers and finally, an output layer. 

Inputs are passed along the different layers, each with its own weights and non-linear 

activation function until the end of the neural network is reached. In the simplest case, all 

layers are fully connected, meaning that every output of the previous layer is used for the 

next one. The way this model is trained goes as follows, every batch of data, the gradient 

of the loss function is calculated using backpropagation. Using this gradient, the weights 

are updated in an iterative way for each batch until the total number of epochs is reached. 

However, some techniques do not require the total number of epochs to be completed, 

but one of these will be discussed further on. Figure 1 shows an example of an MLP 

architecture. For more information on MLP’s, Hernane Spatti et al. (2017) give a good 

and very thorough explanation. 

 

 
Figure 1: Example of a Multi-Layer Perceptron 

https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html 

https://www.oreilly.com/library/view/getting-started-with/9781786468574/ch04s04.html
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3.2.2 Convolutional Neural Networks 

A slightly more complex architecture, is the Convolutional Neural Network (CNN). The 

main idea behind this architecture lies within the use of its so-called filters or kernels. 

These then perform convolutions, actions that are known to detect certain structures in 

data. Therefore, CNNs are mainly used for image recognition. The reason for the 

applicability of CNNs for financial data is its power to detect certain patterns in the 

preceding datapoints, and thus giving an indication of what the direction of the movement 

in price will be. For more in-depth information on the working of a CNN, Borovykh et al. 

(2018) gives a brief but thorough explanation. 

3.2.3 Recurrent Neural Networks & LSTM 

A widely used branch of Deep Learning for time series analysis is the domain of 

Recurrent Neural Networks (RNN). The main difference with standard deep neural 

networks is given by their feedback loops used within the neural network. However, one 

disadvantage of RNNs, is the problem of vanishing gradients, which is well explained by 

Pascanu et al. (2012). One branch of the RNN models offers a specific solution to this 

problem by introducing a new model architecture: Long Short-Term Memory (LSTM). This 

is done by the introduction of the concept ‘forget-gate’ by Gers et al. (2000). 

3.3 Machine Learning Concepts 

3.3.1 Grid Search 

A difficult, and often arbitrary part of creating a Machine Learning model is the choice of 

hyperparameters. However, one way to solve this issue, is to run through the search 

space of hyperparameters to see which kind of models fit the data best. One way to 

implement this, is by using a so-called Grid Search. Here, different values are passed 

along for the different hyperparameters that are present in the grid. These are then 

enumerated in order to find the model that best learns how to fit the data. More 

information on hyperparameter searches is given by Claesen & De Moor (2015). 

3.3.2 Cross-validation 

One way to validate the fitted model is by using the so-called cross-validation. As where a 

standard training procedure uses one training and one validation set are used, cross 

validation does this several times, based on the cross-validation parameter, which can be 

arbitrarily chosen. One extension to this is the so-called stratified cross-validation. The 

only difference here is that the mean value for the output are set equal, in order to not 

have too difference between the datasets. When performing a Grid Search, as discussed 

in the above, a stratified cross-validation is used as well.  
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3.3.3 Early stopping 

One of the most prominent questions when fitting a model on data is whether or not the 

model is over- or underfit. One technique that helps solving the over- and underfitting 

issues is early stopping. The concept is simple; Whenever the loss function stops 

declining for the validation set after a chosen number of training epochs, the training is 

immediately stopped, hence the name. This prevents the model from overfitting on the 

training data without improving (or even worsening) the performance of the validation 

data. One downside of this method is the arbitrarily chosen number of epochs after which 

the training might be terminated. For more information on this topic, Prechelt (2012) can 

be consulted. 

3.3.4 Dropout 

Another way to deal with overfitting, is by using dropout. As discussed by Srivastava et al. 

(2014), this regularization technique randomly drops nodes at a certain dropout rate when 

training the model. For example, with a dropout rate of 0.5, half of the trained nodes, 

along with their connections and output value, are dropped during training. The intuition 

behind dropout goes as follows, when certain nodes can be dropped, the network cannot 

rely on certain nodes during training and thus will spread out the weights over different 

nodes. However, when using dropout, one thing needs to be considered. As dropped 

nodes during training are present in the final model, weights are changed by a factor of 

one minus the dropout rate, ensuring that the outputted test values resemble the trained 

output values. Figure 2 gives a visual explanation of how dropout works. 

 
Figure 2: Visual representation of a NN before (a) and after (b) applying dropout (Srivastava 
et al., 2014) 

3.3.5 Batch Normalization 

Another way to increase the performance of a deep learning model, is by applying batch 

normalization. When using this technique, the output values of the activation function for 

the different nodes in the network are then normalized, i.e. scaled between 0 and 1. After 

this normalization, two parameters are added to the change the mean and standard 

deviation of these outputs. By doing this, two advantages are created. First, the training 

of the model can be done a lot quicker and secondly, some large weights are avoided as 

this batch normalization is implemented in the process of calculating the gradients when 
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updating the weights of the model. Therefore, batch normalization can be seen as a 

replacement of dropout for avoiding an overfit of the training data. 
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4 Methodology 

Creating a Deep Learning model can be a long and tedious process. Therefore, the 

framework for machine learning projects presented by Yufeng (2017) can offer some 

guidance. The presented framework consists of 7 steps: 

1. Data Collection 

2. Data Preparation 

3. Choosing a Model 

4. Training the Model 

5. Evaluating the Model 

6. Finetuning the Hyperparameters 

7. Making Predictions 

However, throughout this project, steps 2 through 6 will be looped over when 

experimenting with certain features and model architectures. The entire process will be 

executed using Python in Google Colab. 

4.1 Data Collection 

The first step in any machine learning project is gathering the necessary data. In this 

case the forex data of the EUR/USD market from 2016 to 2018 was gathered. When 

taking a closer look at the data, a tick-by-tick granularity can easily be observed. This is 

the case for 3 features: the bid, the ask and the point in time of the concerned tick. This 

data was made available for this research by Double Duty NV. 

4.2 Data Preparation 

4.2.1 Aggregation 

The first step in preparing the above-mentioned data, is by aggregating it. Due to its high 

granularity and the time it would take to open and close a position, a model on highly 

granular data would be a waste of computational power as our goal is not to scrape 

profits by performing lightning fast trades. However, note that this is exactly what high-

frequency trading (HFT) does (Gomber & Haferkorn, 2013).  

The aggregation of the data has been done based on the number of ticks (tick bars) 

instead of the column indicating the time. By aggregating this way, the main problem of 

time bars, being that low-activity periods are oversampled and vice versa, is avoided. 

More information on this topic is given by Lopez de Prado (2018).  

The number of ticks per bar can be arbitrarily chosen, but traditionally one relies on the 

Fibonacci numbers (Vonko, 2019). That is why tick bars have been constructed in 

batches of 610 and 2584. Depending on the volatility, these granularities represent bars 

for every minute, 610 ticks in a highly volatile period, to even an hour, 2584 ticks in a 



 

 14 

period with a rather low volatility. For every batch of tick bars, the open, high, low and 

close features are constructed based on the averages of the bid and the ask for every 

datapoint in the batch. Next to these, the latest point in time is passed along as well. 

4.2.2 Data exploration 

Before using data to train predictive models, it is important to understand the data. In 

figure 3, a plot of the closing prices is given. Three years of data are shown. Note that the 

data of 2017 has a different trend, compared to the year before and after.   

 
Figure 3: Closing price per year 

Furthermore, table 2 reports some summary statistics for each year of our data. These 

figures are constructed out of the aggregated tick bars of size 610. Firstly, the number of 

values for the three years of data varies a lot. Due to the use of tick bars, this means that 

a year with a higher count, such as 2016, has a higher number of transactions, whereas 

2018 clearly shows a lower number of transactions. Also, interesting to see, is that the 

kurtosis varies significantly from year to year. Here, a lower value for the kurtosis of the 

year 2016 indicates a less peaked version of the probability density function, compared to 

the ones of 2017 and 2018. 

 

Table 2: Summary statistics of closing prices per year 

YEAR COUNT MEAN STD MIN MAX SKEWNESS KURTOSIS 

2016 202022 1.105855 0.026543 1.035300 1.113395 1.16126 -0.833590 

2017 124940 1.106802 0.047312 1.034335 1.089155 1.20893 0.585335 

2018 66003 1.184923 0.037221 1.121840 1.171865 1.25546 0.284131 
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4.2.3 Differentiating 

When performing time series analysis on financial data, the prices are rarely used as 

inputs for the concerned model. This is due to the non-stationary characteristics of the 

price over time. Instead, the differenced time series, i.e. the time series of the changes in 

price, is used. Figure 4 shows a plot of the same data, but now in differences. From this 

figure can be seen that the volatility is higher in 2016 than in e.g. 2018. In addition, we 

can see that the search space is much different compared to the one we had with figure 

3. The differenced time series helps us to try and find different patters than the trend in 

figure 3. 

 
Figure 4: Differentiated closing price per year 

Table 3 shows some basic statistics of the time series in differences. One statistic that 

stands out compared to the statistics of the undifferentiated time series, is the kurtosis. 

The much higher value is due to the inherent characteristic that differenced time series 

are much spikier because of the elimination of the trend. 

 

Table 3: Summary statistics of differentiated closing prices per year 

YEAR COUNT MEAN STD MIN MAX SKEWNESS KURTOSIS 

2016 202021 -1.682003E-07 0.000235 -0.010185 0.006920 -0.705251 69.629981 

2017 124939 1.183578E-06 0.000240 -0.006380 0.014815 1.954202 135.982658 

2018 66002 -9.470168E-07 0.000343 -0.003370 0.003890 0.101151 2.777154 

4.2.4 Train/test split 

The training set will consist out data from years 2016 and 2017, while the test set will be 

the data from 2018. This gives a test set of 66000 instances, which is about 17% of our 

available data. 
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4.3 Choosing a Model and Architecture 

As concluded in the literature review, two types of deep learning architectures are 

currently perceived as state-of-the-art for financial time series prediction: CNNs and 

LSTMs. That is why those 2 architectures will be considered in this research. 

4.3.1 Convolutional Neural Networks 

The structure of our CNN will consist of different one-dimensional convolutional layers, 

followed by a flatten layer, that flattens the data to a one-dimensional array. Next, two 

fully connected layers are added that give a number of outputs, based on the forecasting 

horizon, which can predict a movement in price. 

4.3.2 Long Short-Term Memory 

The architecture of our LSTM model consists of several LSTM blocks, followed by two 

fully connected layers, resulting a number of outputs, again reflecting the movements in 

price for our forecasting horzion. As an LSTM block can ‘forget’, the addition of extra 

blocks is not harmful for the quality of the predictions. Note that this was not the case for 

the architecture of the CNNs discussed above. 

4.4 Training the Model 

Both the LSTM and CNN models are trained on the differentiated time series data of 

2016 and 2017. Twenty percent of the training data is left out as a validation set. This 

data will act as a way of checking whether the initial 80% of the data is overfit or not. 

When training our models, some Deep Learning techniques such as early stopping, 

dropout and batch normalization were used. For a more in-depth explanation on these 

approaches, chapter 3 can be consulted. 

4.4.1 Input features 

In table 4, an overview of the four different input features sets can be found. In set A, only 

the closing prices will be used to predict closing prices in the future. Set B expands on 

this by adding the high and the low for each tick bar. In set C, the closing price will be 

used together with moving averages of length 5, 10 and 20. Lastly, set D will combine all 

features together. 

Figure 5: Representation of CNN model 

Figure 6: Representation of LSTM model 
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Table 4: Overview of input feature sets 

INPUT FEATURE SET A SET B SET C SET D 

CLOSE X X X X 

HIGH  X  X 

LOW  X  X 

MOVING AVERAGE 5   X X 

MOVING AVERAGE 10   X X 

MOVING AVERAGE 20   X X 

4.5 Evaluating the model 

Knowing whether these above-mentioned performance metrics are good or not is hard to 

say based on the values itself. That is why the performance of the different models will be 

benchmarked against the performance of two different persistence models and an Auto 

Regressive Integrated Moving Average model (ARIMA). This benchmark will be done for 

the data of 2018, based on some performance measures. 

In time series analysis, 5 performance measures are commonly used: mean absolute 

error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root 

mean squared error (RMSE) and R² (RSQ). A full discussion for these metrics can be 

found in Hanke and Reitsch (1998) and Pindyck and Rubinfeld (1998). However, when 

comparing a CNN model trained on the differenced time series against a price-based 

persistence model, a transformation must be done, before a performance metric such as 

the MAPE can be used, as this metric uses the percentage-wise errors. 

4.5.1 Persistence model 

The first kind of benchmark model used to test the performance of our Deep Learning 

models, is the persistence model. Both its variants, price-based and difference-based, 

are explained in the previous chapter.   
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4.5.2 ARIMA model 

The second type of benchmark model is the ARIMA model. The process for choosing the 

appropriate ARIMA model consist of starting with a less complex model and gradually 

increasing the number of parameters. While doing so, the Aikaike Information Criteria 

(AIC) is used as a goodness of fit measure. The lower this value, the better the goodness 

of fit. An indication of the order for the AR and MA component can be indicated by the 

Autocorrelation function (ACF) and the Partial Autocorrelation function (PACF). 

However, as can be seen from the first set of the ACF and PACF, interdependencies 

occur between the autocorrelations. This can be resolved by taking the first order 

differences of the time series (I component of 1) and consequently plotting the same two 

functions. This conclusion can be backed by the test statistic score of 0.817 of the 

augmented dickey fuller test (Dickey & Fuller, 1979) which clearly does not reject the null 

hypothesis of a unit root and thus, indicates that the time series is not stationary. Note 

that these plots are made based on the closing price of the 610-tick bars, but the same 

conclusion could be drawn for the different aggregated tick bars. 

 
Figure 7: ACF and PACF for closing price of the 610-tick bars  

When taking the first differences of the previous mentioned time series, an augmented 

Dickey-Fuller test now clearly shows that the time series is stationary with a test statistic 

of 7.96.10e-30. The second set of plots now shows the ACF and the PACF of the 

differenced time series. Whereas the previous set of plots showed some very high 

correlations due to the trend, this is no longer the case. This might indicate that the 

obtained ARIMA models will not be as significant as hoped for. Table X and X below 

show an overview of the different tested orders and their AIC-value. Note that an 

augmented Dickey-Fuller test was performed on the residuals of any given model and 

that the conclusion was identical for every model, confirming the validity of the 

constructed models.  

 



 

 19 

Figure 8: ACF and PACF of the closing price of the 610-tick bars after taking first differences 

As can be seen in the two tables below, the lowest AIC was obtained by the ARIMA-

model of order (0,1,2) for the 610-tick bars and order (1,1,1) for the 2584-tick bars. For 

more information on this model, McKenzie (2010) can be consulted. Furthermore, the 

residuals behaved like a random walk, which was backed by the Dickey-Fuller test score. 

Nau (2014) and Armstrong et al. (2015) confirmed that the orders of the AR and MA 

component of an ARIMA should be kept quite small, which backs the low-order models 

used during this research. 

 

Table 5: AIC values for different order ARIMA models 

610-TICK BARS 2584-TICK BARS 

ORDER AIC ORDER AIC 

(1,1,0) -4530815.72 (1,1,0) -962646.50 

(0,1,1) -4530817.71 (0,1,1) -962647.46 

(0,1,2) -4530872.20 (0,1,2) -962650.00 

(1,1,1) -4530863.42 (1,1,1) -962652.10 

(2,1,1) -4530869.89 (2,1,1) -962647.61 

(3,1,1) -4530867.88 (3,1,1) -962648.08 

(1,1,2) -4530870.30 (1,1,2) AR- COMPONENT IS  NOT 
STATIONARY 

(2,1,0) -4530871.86 (2,1,0) -962649.52 

 

4.6 Tuning the hyperparameters 

When working with deep learning techniques, the performance of the models also relies 

on the correct choice of hyperparameters. One way to deal with this choice, is by running 

a grid search. This test different pre-defined combinations of hyperparameters for a small 

number of iterations (epochs). The most promising values are then chosen to be included 

in the final model. 
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Table 6: Tune grid for the CNN and LSTM 

CNN LSTM 

PARAMETER GRID SEARCH VALUES PARAMETER GRID SEARCH VALUES 

# FILTERS 16, 32, 64, 128 # LSTM UNITS 5, 10, 20 ,50 

KERNEL SIZE 2, 4, 8, 16 DROPOUT RATE 0.05, 0.10, 0.20 

# NODES IN DENSE 
LAYERS 

20, 50, 100 # NODES IN DENSE 
LAYERS 

20, 50, 100 

# CONVULUTIONAL 
LAYERS 

1, 2, 3 / / 

# HIDDEN DENSE 
 LAYERS 

1, 2, 3 # HIDDEN DENSE 
 LAYERS 

1, 2, 3 

OPTIMIZER ADAM, ADAGRAD, ADADELTA OPTIMIZER ADAM, ADAGRAD, ADADELTA 

LEARNING RATE 0.001, 0.01, 0.1, 0.15, 0.2, 0.3 LEARNING RATE 0.001, 0.01, 0.1, 0.15, 0.2, 0.3 

During this project, several grid searches have been performed in order to find optimal 

values for hyperparameters such as the learning rate, the optimal number of neurons in 

the first fully connected layer, or even the specific built of the convolutional layers or 

LSTM blocks. Table 6 summarizes the tune grids for both models. When performing the 

grid search, a standard stratified 3-fold cross validation was used. Based on the mean 

and the standard deviation of these results, the optimal set of hyperparameters were 

chosen. 

4.7 Making Predictions 

4.7.1 One step ahead 

The final step in the process discussed by Yufeng (2017) consists of the deployment of 

the model or the actual predictions as he calls it. This means that a model can be 

implemented on real time data. Therefore, the validity of the training and test data must 

be true. This means, that at the time of prediction, all data concerning that prediction 

should be known and that the prediction interval is large enough for predictions to be 

made and implemented. In this case, a prediction can be made every batch of ticks, 

depending on which model that is being used. At that point in time, the aggregated 

groups of ticks are then used to predict the average closing price of the next batch of 

ticks. This can offer guidance in determining the trend by looking at the difference 

between the predicted value and the closing price of the last batch ticks. 
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4.7.2 Multiple step ahead 

Another way to tackle this problem, is to perform a multiple step ahead forecast. In this 

case, multiple timepoints are predicted at once. Here, the intuition is that a possible 

upward or downward trend can be revealed over a longer period of time. This is 

particularly referring to the Deep Learning models, as the naïve approaches are not that 

appropriate for this task. During this thesis, a 5-step ahead forecast was used to test the 

relevancy of our models.  
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5 Results 

Throughout this chapter, the results of all models will be reported individually. The 

discussion and comparison of these results will be done in chapter 6. The assessment of 

the models will be based on the MSE. 

5.1 One-step forecasting 

Here, we will briefly summarize the main results for the one-step ahead case. An 

overview of the results can be found in table 6. 

5.1.1 Persistence model 

5.1.1.1 Price-based 

In figure 9, it can be seen that the predicted values are equal to the true values with a lag 

of one period. This is the most simple and naïve model and acts purely as a baseline. For 

the tick bars of size 610, an MSE of 1.176E-07 was found, while the 2584 sized tick bars 

showed an MSE of 4.742E-07. 

 
Figure 9: A sample of the true and predicted values for the price-based persistence model 

5.1.1.2 Difference-based 

Figure 10 demonstrates a sample of the predictions versus actuals in the case of a 

difference-based persistence model. Here as well, the model purely serves as a baseline. 

An MSE of 2.392E-07 and 9.591E-07 was obtained for the tick bars of size 610 and 2584 

respectively. 
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5.1.2 ARIMA 

5.1.2.1 610 ticks 

A third and final benchmark model which was constructed is the ARIMA. As shown in the 

methodology, section 4.5.2, the order for the 610-tick model was decided to be (0,1,2), 

where the MA-components have a value of respectively -1.537E-2 and -1.333E-2. Figure 

11 plots the predictions versus actuals. Note that the similarity to the plot of the price-

based persistency model can be explained by the absence of the AR- component and the 

small values for both Ma-components. 

 
Figure 11: A sample of the true and predicted values for the ARIMA model 

The MSE for this one-step ARIMA models was found to be 1.180E-07 and 4.740E-07. 

Figure 10: A sample of the true and predicted values for the difference-based persistence 
model 
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5.1.2.2 2584 ticks 

As was already mentioned, the order for the 2584-tick ARIMA model was decided to be 

(1,1,1), where the AR-component has a value of 2.575E-1 and the MA-component a 

value of 2.859E-1. Figure 12 shows the predictions versus actuals. Even though both 

components have at least one value, the plot still doesn’t show any significant 

predictions, due to the fitted parameters to be so small.  

 
Figure 12: A sample of the true and predicted values for the ARIMA model 

The MSE for this one-step ARIMA models was found to be 4.740E-07. 

5.1.3 CNN 

5.1.3.1 610 ticks 

MSE for set-up A, B, C and D are respectively 1.178E-07, 1.196E-07, 1.180E-07, 1.300E-

07. It is noteworthy to mention that for all of the set-ups, the CNN predicts a small 

constant value for the whole test set. Therefore, as can be seen in figure 13, the results 

look very similar to the results of the persistence model, something which will be further 

discussed in the next chapter.  
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Figure 13: A sample of the true and predicted values for the CNN model – 610 ticks 

5.1.3.2 2584 ticks 

In contrast to the effect of constant predictions for the tick bars of size 610, the CNN 

resulted in a model which actually did make some interesting predictions. However, the 

MSE for the different set-ups are found to be higher than for the price-based persistence 

model: 5.749E-07 for set-up A, 6.224E-07 for set-up B, 5.155E-07 for set-up C, and 

6.465E-07 for set-up D. Figure 14 demonstrates a sample of the true and predicted 

prices. 
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Figure 14: A sample of the true and predicted values for the CNN model – 2584 ticks 

5.1.4 LSTM 

5.1.4.1 610 ticks 

Same as for the CNN, the LSTM predicts here a very small (nearly) constant value. The 

MSE’s are respectively 1.176E-07, 1.194E-07, 1.416E-07, and 1.234E-07 for the different 

set-ups. A plot would be comparable to figure 13. 

5.1.4.2 2584 ticks 

In this case, the MSE’s are respectively 4.745E-07, 4.745E-07, 4.753E-07, and 4.746E-

07. The LSTM applied on the tick bars of size 2584 resulted in predictions which are not 

constant over time, though very small compared to the actuals. This will be further 

discussed during the next chapter. 

5.2 Multi-step predictions 

The results for each model and set-up for the multi-step prediction case can be found in 

table 6. These results will be discussed throughout the next chapter. 

 

Table 7: Overview of results MSE 

 ONE-STEP MULTI-STEP (5) 

MODEL SET-UP 610 TICKS 2584 TICKS 610 TICKS 2584 TICKS 
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PERSISTENCE PRICE A 1.176E-07 4.742E-07 2.367E-07 1.396E-06 

PERSISTENCE DIFF A 2.392E-07 9.591E-07 4.653E-07 1.885E-06 

ARIMA A 1.180E-07 4.740E-07 3.390E-07 1.396E-06 

CNN A 1.178E-07 5.749E-07 3.430E-07 1.452E-06 

B 1.196E-07 6.224E-07 3.437E-07 1.454E-06 

C 1.180E-07 5.155E-07 3.434E-07 1.523E-06 

D 1.300E-07 6.465E-07 3.429E-07 1.443E-06 

LSTM A 1.176E-07 4.745E-07 3.412E-07 1.396E-06 

B 1.194E-07 4.745E-07 3.434E-07 1.397E-06 

C 1.416E-07 4.753E-07 3.430E-07 1.400E-06 

D 1.234E-07 4.746E-07 3.476E-07 1.400E-06 
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6 Discussion 

In table 6, the MSEs for the different models and set-ups can be found. Based on this 

metric, it seems that both the CNN and LSTM did not manage to learn valuable 

information in order to predict future values. Below, a closer look is taken at the 

predictions of the fitted models.  

One remarkable effect that could be observed when using tick bars of size 610 is that the 

predictions, both for the CNN as for the LSTM, are a constant value. This effect was first 

observed in the setting of one-step ahead forecasting, after which the decision was made 

to increase the complexity of the set-up. However, as can be seen in figure 15, the effect 

did not change.  

 

 
Figure 15: Example of the constant predictions - 610-tick bars 

One possible explanation for why these predictions are constant, might be the granularity. 

By aggregating the data to 610-tick bars, the initial correlation between the adjacent 

closing prices on tick-by-tick basis are lost. This decision, however, was made to 

differentiate our approach to the approach of HFT as discussed by Gomber & Haferkorn 

(2013). However, when aggregating even further, some of the (unexplainable) volatility is 

eliminated, which might cause our models to perform better.  

Therefore, the decision was made to look into forecasting with lower granularities, i.e. 

more ticks included per bar, by constructing 2584-tick bars. These delivered some useful 

predictions, which will now be discussed one by one. 
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6.1 CNN 

Even though the MSE’s for every CNN input feature set is worse than for the naïve 

baseline model, it seems like the model did learn to recognize some patterns. Figure 16 

demonstrates the predicted differences versus actuals for the CNN.  

  
Figure 16: A sample of the predicted differences vs. actuals for the CNN – 2584-tick bars 

This might at first not look like trustworthy predictions but could in fact give a robust 

forecast when applied on bigger timespans. 

When comparing the performance between the different sets of input features, we can 

observe a slightly better result for input feature set C, where moving averages are taken 

into account. 

6.2 LSTM 

Overall, the LSTM seemed to perform better compared to the CNN in terms of MSE. The 

predictions, however, are again significantly smaller – but not constant. This can be 

observed in figure 17 and 18, where only the predicted differences are plotted, and then 

put into perspective by adding the actual values. 
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Figure 17: A sample of the predicted differences for the LSTM – 2584-tick bars 

 

 
Figure 18: the predictions for the LSTM put into perspective 

Although these predictions are not that significant compared to the actual differences, 

these predictions might contain some useful information regarding the sign of the 

forecasted differences, i.e. whether price will go up or down. This, however, is something 

that still needs to be investigated. Additionally, the non-constant learned outputs might 

suggest that something can be learned from the training data or that some patterns might 

be hidden in the data.  
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6.3 Comparison and remarks 

Overall, it can be seen that input feature set A, which only uses the closing price as input 

feature, is in most cases the best performing. This result was quite surprising, since we 

expected the lows and highs of closing prices (set B), or the moving averages (set C) to 

contain additional information that could increase the performance of the model. In 

contrast, with the results obtained, it is not possible to conclude such statements. In fact, 

if we only look at MSE, we would have to conclude that the simplest model in most cases 

performs best. 

Moreover, it seems that both the CNN and LSTM did not manage to outperform a naïve, 

price-based persistency model. However, the CNN did manage to learn some patterns 

and make significant predictions, while the LSTM did find some small values for the 

predicted differences. The exact reason for the significant differences in outcomes 

between the between the CNN and LSTM is still unclear. It would be interesting to see 

what would happen with the outcomes once the granularity is decreased somewhat more. 

As we observed it, both the LSTM and CNN resulted in more valuable predictions after 

decreasing the granularity and increasing the number of steps predicted ahead. This is, 

as we believe, where deep learning starts to look more promising for predicting forex time 

series. 
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7 Conclusions 

We set out to fill the research gap concerning the application of deep learning on intraday 

forex rates. To that end, we constructed two models based on state-of-the-art machine 

learning techniques for time series and compared their performance with both a naïve 

and a traditional approach. Our results suggest that predicting intraday forex returns, 

without scalping slight profits in huge volumes (i.e. high-frequency trading according to 

Gomber & Haferkorn, 2013), remains a challenging task. More specifically, we found that 

both a CNN and an LSTM did not manage to outperform a naïve model. In addition, the 

obtained results are not able to prove that adding additional informative input features 

would improve the predictive performance. To this extent, we found that our univariate 

models, which only take closing prices as an input, often perform better than their 

multivariate versions which took lows and highs or moving averages into the set of input 

features. Lastly, we found that lowering the granularity of input data and increasing the 

number of steps predicted ahead is beneficial for the usefulness of predictions based on 

our deep learning models. 

There are three additional things that could be tried in order to improve our models. 

Firstly, the models could be fitted for larger forecast horizons and lower granularity of 

input data. Secondly, it would be interesting to see what the effect is of using time bars 

instead of tick bars. And thirdly, it might be possible that increasing the complexity of the 

models could improve performance, in the hope that the increased complexity would be 

able to detect certain patterns which our models were not able to find. 

Overall, the usefulness of Deep Learning to predict intraday foreign exchange rates has 

not been proven yet. Therefore, it would not be beneficial thus far to construct a trading 

robot for this task. However, when expanding the forecast horizon and lowering the 

granularity of the tick bars, the deep learning approaches start to seem more valuable. 

This would be an interesting path for future research. 

An important question to be answered in future research is whether our conclusion 

remains valid on other currency pairs, or whether adding other informative data such as 

bond yields would increase the performance of intraday predictive models. 
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Appendices 

Appendix 1: Daily net revenues of Goldman Sachs in 2017 

  

Daily net revenues of Goldman Sachs in 2017 (Goldman Sachs 2017 Form 10-K, p.95) 
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