
Long-Term Memory
in Stock Market Prices

6.1 Introduction

THAT ECONOMIC TIME 5~~~~5 can exhibit long-range dependence has been a
hypothesis of many early theories of the trade and business cycles . Such the-
ories were often motivated by the distinct but nonperiodic cyclical patterns
that typified plots of economic aggregates over time, cycles of many periods,
some that seem nearly as long as the entire span of the sample . In the fre-
quency domain such time series are said to have power at low frequencies .
So common was this particular feature of the data that Granger (19fifi) con-
sidered it the "typical spectral shape of an economic variable ." It has also
been called the "Joseph Effect" by Mandelbrot and Wallis (1968) , a playful
but not inappropriate biblical reference to the Old Testament prophet who
foretold of the seven years of plenty followed by the seven years of famine
that Egypt was to experience . Indeed, Nature's predilection towards long-
range dependence has been well-documented in hydrology, meteorology,
and geophysics, and to the extent that the ultimate sources of uncertainty
in economics are natural phenomena like rainfall or earthquakes, we might
also expect to find long-term memory in economic time series . t

The presence of long-memory components in asset returns has impor-
tantimplications for many of the paradigms used in modern financial eco-
nomics. For example, optimal consumption/savings and portfolio decisions
may become extremely sensitive to the investment horizon if stock returns
were long-range dependent. Problems also arise in the pricing of derivative
securities (such as options and futures) with martingale methods, since the
continuous time stochastic processes most commonly employed are incon-

1 Haubrich (1993) and Haubrich and Lo (1989) provide a less fanciful theory of long-range
dependence in economic aggregates .
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sistent with long-term memory (see Maheswaran, 1990 ; Maheswaran and
Sims, 1990 ; Sims, 1984, for example) . Traditional tests of the capital asset
pricing model and the arbitrage pricing theory are no longer valid since
the usual forms of statistical inference do not apply to time series exhibiting
such persistence . And the conclusions of more recent tests of "efficient"
markets hypotheses or stock market rationality also hang precariously on
the presence or absence of long-term memory. 2

Among the first to have considered the possibility and implications of
persistent statistical dependence in asset returns was Mandelbrot (1971) .
Since then, several empirical studies have lent further support to Mandel-
brot'sfindings . For example, Greene and Fielitz (1977) claim to have found
long-range dependence in the daily returns of many securities listed on
the New York Stock Exchange . More recent investigations have uncovered
anomalous behavior in long-horizon stock returns ; 3 alternately attributed
to speculative fads and to time-varying conditional expected returns, these
long-run swings may be further evidence of the Joseph effect.

In this chapter we develop a test for such forms of long-range depen-
dence using a simple generalization of a statistic first proposed by the English
hydrologist Harold Edwin Hurst (1951) . Thίs statistic, called the "resealed
range" or "range over standard deviation" or "R/S" statistic, has been re-
fined by Mandelbrot (1972, 1975) and others in several important ways
(see, for example, Mandelbrot and Taqqu, 1979, and Mandelbrot and Wal-
lis, 1968, 1969a-c) . However, such refinements were not designed to dis-
tinguish between short-range and long-range dependence (in a sense to be
made precise below), a severe shortcoming in applications of R/S analysis
to recent stock returns data since Lo and MacKinlay (1988b, 1990b) show
that such data display substantial short-range dependence . Therefore, to
be of current interest, any empirical investigation of long-term memory in
stock returns must first account for the presence of higher frequency auto-
correlation .

By modifying the resealed range appropriately, we construct a test statis-
tic that is robust to short-range dependence, and derive its limiting distri-
bution under both short-range and long-range dependence . Contrary to
the findings of Greene and Fielitz (1977) and others, when this statistic is
applied to daily and monthly stock return indexes over several different
sample periods and sub-periods, there is no evidence of long-range depen-
dence once the effects of short-range dependence are accounted for . Monte
Carlo experiments indicate that the modified R/S test has reasonable power
against at least two particular models of long-range dependence, suggesting

2See LeRoy (1989) and Merton (1987) for excellent surveys of this recent literature .
3 See, for example, Fama and French (1988), Jegadeesh (1989, 1990), and Poterba and

Summers (1988) .
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that the time series behavior of stock returns may be adequately captured
by more conventional models of short-range dependence .

The particular notions of short-term and long-term memory are defined
in Section 6 .2 and some illustrative examples are given . The test statistic ~s
presented in Section 6 .3 and its limiting distributions under the null and
alternative hypotheses are derived via functional central limit theory. In
Section 6.4 the empirical results are reported, and Monte Carlo simulations
that illustrate the size and power of the test in finite samples are presented
in Section 6 .5. We conclude in Section 6.6 .

6.2 Long-Range Versus Short-Range Dependence

To develop a method for detecting long-term memory, the distinction be-
tween long-range and short-range statistical dependence must be made pre-
cise . One of the most widely used concepts of short-range dependence is
the notion of "strong-mixing" due to Rosenblatt (1956), a measure of the
decline in statistical dependence between events separated by successively
longer spans of time . Heuristically, a time series is strong-mixing if the max-
imal dependence between events at any two dates becomes trivially small as
the time span between those two dates increases . By controlling the rate at
which the dependence between past and future events declines, it is possi-
ble to extend the usual laws of large numbers and central limit theorems
to dependent sequences of random variables . We adopt strong-mixing as
an operational definition of short-range dependence in the null hypothesis
of Section 6 .2 .1 . In Section 6 .2.2, we give examples of alternatives to short-
range dependence such as the class of fractionally-differenced processes
proposed by Granger and Joyeux (1980) , Hosking (1981) , and Mandelbrot
and Van Ness (1968) .

6.2.1 The Null Hypothesis

Let P~ denote the price of an asset at time t and define Xt - log PI - logPt_~
to be the continuously compounded single-period return of that asset from
t-1 to t . With little loss in generality, let all dividend payments be reinvested
in the asset so that X~ is indeed the total return of the asset between t - 1
and t . 4 It is assumed throughout that

where ~ is an arbitrary but fixed parameter and ~ t is a zero mean random
variable . Let this stochastic process {XI(~)} be defined on the probability

4This is in fact how the stock returns data are constructed.

Χι = ~ + εt>

	

(6.2 .η
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space (~, F, P) and define

ß(A,13) __

	

sup ~P(A ~ B) - P(A)P(B) ~ , A C .~, .t3 C F . (6.2 .2)
[ΑΕ . .Q,ΒΕα}

The quantity ~(A, .t3) is a measure of the dependence between the two
~-fields A and C3 in F. Denote by 135 the Borel ~-field generated b~
{XS (~), . . . , X~(~)}, i .e ., 135 - ~(XS (~), . . . , Xt (~)) C .~. Define the coef-
ficients ~k as

~k =_ sup ~(13~ ~, ~+ k ) .

	

(6.2 .3)

Then {X~(~)} is said to be strong-mixing if limk~~ ~k = 0 . 5 Such mixing
conditions have been used extensively in the recent literature to relax the
assumptions that ensure the consistency and asymptotic normality of vari-
ous econometric estimators (see, for example, Chan and Wei, 1988 ; Phillips,
1987; White, 1980 ; White and Domowitz, 1984) . As Phillips (1987) observes,
these conditions are satisfied by a great many stochastic processes, includ-
ing all Gaussian finite-order stationary ARMA models . Moreover, the in-
clusion of a moment condition also allows for heterogeneously distributed
sequences, an especially important extension in view of the apparent insta-
bilities of financial time series .

In addition to strong mixing, several other conditions are required as
part of the null hypothesis in order to develop a sampling theory for the
test statistic proposed in Section 6 .3 . In particular, the null hypothesis is
composed of the following four conditions on ~ z :

(Al ) E [~~] = 0 for all t ;

(A2) sup E[~~~~ß] < oo for some ß > 2 ;

η 1 2

(Α3) 0 < σ2 = lim Ε ~ (Σ ε~ ι < οο ;
η~

	

/~~-ι

(A4) {~~} is strong-mixing with mixing coefficients ~k that satisfy

ι-~Σ α~ < οο .
~_~

Condition (A1) is standard . Conditions (A2) through (A4) are restrictions
on the maximal degree of dependence and heterogeneity allowable while

SThere are several other ways of measuring the degree statistical dependence, giving rise
to other notions of "mixing ." For further details, see Eberlein and Tagqu (1986), Rosenblatt
(1956), and White (1984) .
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still permitting some form of the law of large numbers and the (functional)
central limit theorem to obtain. Although (A2) rules out infinite variance
marginal distributions of ~ t such as those in the stable family with character-
istic exponent less than 2, the disturbances may still exhibit unconditional
leptokurtosis via time-varying conditional moments (e.g ., conditional het-
eroskedasticity) . Moreover, since there is a trade-off between (A2) and (A4) ,
the uniform bound on the moments can be relaxed if the mixing coefficients
decline faster than (A4) requires . 6 For example, if ~ t is required to have
finite absolute moments of all orders (corresponding to ß ~ oo), then
ak must decline faster than 1/k . However, if ~ t is restricted to have finite
moments only up to order 4, then ~ek must decline faster than 1/ k 2 . These
conditions are discussed at greater length by Phillips (1987) .

Of course, it is too much to hope that all forms of short-memory pro-
cesses are captured by (Al)-(A4) . For example, if ~ t were the first difference
of a stationary process, its spectral density at frequency zero vanishes, violat-
ing (A3) . Yet such a process certainly need not be long-range dependent .
A more subtle example is given by Ibragimov and Rozanov (1978)-a sta-
tionary Gaussian process with spectral density function

°°

	

cos k~
f (~) = exp ~

	

(6.2.4)
~_~ k log k + 1

which is strong-mixing but has unbounded spectral density at the origin .
The stochastic process with 1/f(~) for its spectral density is also strong-
mixing, but 1/f(~) vanishes at the origin . Although neither process is
long-range dependent, they both violate (A3) . Unfortunately, a general
characterization of the implications of such processes for the behavior of
the test statistic proposed in Section 6 .3 is currently unavailable. Therefore,
a rejection of the null hypothesis does not necessarily imply that long-range
dependence is present but merely that, if the rejection is not a type I error,
the stochastic process does not satisfy all four conditions simultaneously .
Whether or not the composite null (Al)-(A4) is a useful one must there-
fore depend on the particular application at hand .

In particular, although mixing conditions have been widely used in
the recent literature, several other sets of assumptions might have served
equally well as our short-range dependent null hypothesis . For example, if
{~ t } is assumed to be stationary and ergodic, the moment condition (A2)
can be relaxed and more temporal dependence than (A4) is allowable (see
Hall and Heyde, 1980) . Whether or not the assumption of stationarity is a

6See Herrndorf (1985) . One of Mandelbrot's (1972) arguments in favor of R/S analysis is
that finite second moments are not required . This is indeed the case if we are interested only
in the almost sure convergence of the statistic . But since for purposes of inference the limiting
distribution is required, a stronger moment condition is needed here .
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restrictive one for financial time series is still an open question . There is
ample evidence of changing variances in stock returns over periods longer
than five years, but unstable volatilities can be a symptom of conditional
heteroskedasticity which can manifest itself in stationary time series . Since
the empirical evidence regarding changing conditional moments in asset
returns is mixed, allowing for nonstationarities in our null hypothesis may
still have value. Moreover, (Al)-(A4) may be weakened further, allowing
for still more temporal dependence and heterogeneity, hence widening the
class of processes contained in our null hypothesis .

Note, however, that conditions (Al)-(A4) are satisfied by many of the re-
cently proposed stochastic models of persistence, such as those of Campbell
and Mankiw (1987) , Fama and French (1988) , and Poterba and Summers
(1988) . Therefore, since such models of longer-term correlations are con-
tained in our null, the kind of long-range dependence that (Al)-(A4) were
designed to exclude are quite different . Although the distinction between
dependence in the short run and the long run may appear to be a matter
of degree, strongly dependent processes behave so differently from weakly
dependent time series that the dichotomy proposed in our null seems most
natural. For example, the spectral densities at frequency zero of strongly de-
pendent processes are either unbounded or zero whereas they are nonzero
and finite for processes in our null . The partial sums of strongly dependent
processes do not converge in distribution at the same rate as weakly depen-
dent series. And graphically, their behavior ~s marked by cyclical patterns
of all kinds, some that are virtually indistinguishable from trends .

6.2.2 Long-Range Dependent Alternatives

In contrast to the short-term memory of "weakly dependent" (i .e ., mixing)
processes, natural phenomena often display long-term memory in the form
of nonperiodic cycles. This has lead several authors to develop stochastic
models that exhibit dependence even over very long time spans, such as
the fractionally-integrated time series models of Granger (1980), Granger
and Joyeux (1980), Hosking (1981), and Mandelbrot and Van Ness (1968) .
These stochastic processes are not strong-mixing, and have autocorrelation
functions that decay at much slower rates than those of weakly dependent
processes . For example, let Xt satisfy the following difference equation :

(1 - L) dX~ = E~,

	

~~ ^' WN(0, ~É),

	

(6.2.5)

where L is the lag operator and ~ t is white noise . Granger and Joyeux (1980)
and Hosking (1981) show that when the quantity (1 - L) d is extended to

Specifically, that the sequence {~~} is strong-mixing may be replaced by the weaker as-
sumption that it is a wear-epoch dependent function of a strong-mixing process . See McLeish
(1977) and Wooldridge and White (1988) for further details .
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noninteger powers of d in the mathematically natural way, the result is a
well-defined time series that is said to be "fractionally-differenced" of order d
(or, equivalently, "fractionally-integrated" of order -d) . Briefly, this involves
expanding the expression (1- L)d via the binomial theorem for noninteger
powers :

(1 - L) d = Σ (-1)k~k~Lk,
k=0

d _ d(d - 1)(d - 2) • • • ( d-k ~-1)

( k)

	

k!

	

'

and then applying the expansion to Xt :

(6.2 .6)

dl
( 1 - L)dΧt = Σ (-1)k ( ' Lk Χ1 = Σ Αk Χ1-k = Et

	

(62.7)
k=Λ

	

k

	

k=0

where the autoregresswe coefficients A k are often re-expressed in terms of
the gamma function :

Ak = (- 1) k 1 k
/ _ ~( d)p(k+1)

.

	

(6.2 .8)

Xt may also be viewed mechanic

\

all

/

y as an infinite-order MA process since

~(k+d)
X~ _ (1 - L)-dEt = B(L)~~,

	

Bk
= ~(d) ~(k + 1)

.

	

(6.2.9)

It is not obvious that such a definition of fractional-differencing might yield
a useful stochastic process, but Granger (1980) , Granger and Joyeux (1980) ,
and Hosking (1981) show that the characteristics of fractionally-differenced
time series are interesting indeed . For example, it may be shown that Xt
~s stationary and invertible for d E (- 2 , 2 ) (see Hosking, 1981) , and ex-
hibits a unique kind of dependence that is positive or negative depending
on whether d is positive or negative, i .e ., the autocorrelation coefficients
of Xt are of the same sign as d . So slowly do the autocorrelations decay
that when d is positive their sum diverges to infinity, and collapses to zero
when d is negative s To develop a sense of this long-range dependence,
compare the autocorrelations of a fractionally-differenced X~ with those of a
stationary AR(1) in Table 6 . L Although both the AR(1) and the fractionally-
differenced (d = 3 ) series have first-order autocorrelations of 0 .500, at lag 25

aMandelbrot and others have called the d < 0 case "anti-persistence," reserving the term
"long-range dependence" for the d > 0 case . However, since both cases involve autocorrela-
tions that decay much more slowly than those of more conventional time series, we call both
long-range dependent.
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Table 6.1 . Comfiarison of autocorrelation functions of frac-
tionally differenced time series (1 - L)dXz = ~~ for d = 3,
-~ with that of an AR(1) X~ = pX~-~ + ~~, p = .5. The
variance of ~ t was chosen to yield a unit variance for X~ in all
three cases.

γk . ..

ρ(k)

	

ρ(k)

	

ρ(k)Lag k

	

ίd = ~~

	

ίd = - 37

	

ί~ί1), Ρ = •5 7

1

	

0.500

	

-0.250

	

0.500
2

	

0.400

	

-0.071

	

0.250
3

	

0.350

	

-0.036

	

0.125
4

	

0.318

	

-0.022

	

0.063
5

	

0.295

	

-0.015

	

0.031

10

	

0.235

	

-0.005

	

0.001
25

	

0.173

	

-0.001

	

2.98 χ 10_ 8

50

	

0.137

	

-3.24 χ 10 -4

	

8.88 χ 10-ι ε

100

	

0.109

	

-1.02 χ 10-4

	

7.89 χ 10-3ι

the AR(1) autocorrelation is 2 .98 x 10 -g whereas the fractionally-differenced
series has autocorrelation 0 .173, declining only to 0 .109 at lag 100 .

In fact, the defining characteristic of long-range dependent processes
has been taken by many to be this slow decay of the autocovariance function .
Therefore, more generally, long-range dependent processes may be defined
to be those processes with autocovariance functions ~~ such that

k°L(k) for v ~ (-1, 0) or
-k°L(k) for v ~ (-2, -1), as k --i οο,

	

(6.2 .10)

where L(k) is any slowly varying function at infinity . 9 This is the definition
we shall adopt in the analysis to follow . As an example, the autocovariance
function of the fractionally-differenced process (6.2 .5) is

_

	

~É~(1 2d) ~(k + d)

	

2d 1

	

(6.2.11)Yk

	

~(d) ~(1 - d) ~(k + 1 - ~ ~ ck

	

as k -i oo,

where d E (- 2 , 2 ) and c is some constant. Depending on whether d is

9Afunctionf(x)issaidtoberegularlyvaryingatinfinitywithindexpiflim~_,~ f(tx)/f(t)=xP
for all ~ > 0 ; hence regularly varying functions are functions that behave like power functions
asymptotically. When p = 0, the function is said to be slowly varying at infinity, since it behaves
like a constant for large ~ . An example of a function that is slowly varying at infinity is log x.
See Resnick (1987) for further properties of regularly varying functions .
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negative or positive, the spectral density of (6.2 .5) at frequency zero, given by

f (~) = (1 - e-`~)-d (1 - e~~)-d~~ ,,, ~~~-2a as ~ ~ 0,

	

(6.2.12)

will either be zero or infinite; thus such processes violate condition (A3),~ o

Furthermore, the results of Helson and Sarason (1967) show that these
processes are not strong-mixing ; hence they also violate condition (A4) of
our null hypothesis .~~

6.3 The Rescaled Range Statistic

To detect long-range or "strong" dependence, Mandelbrot has suggested
using the range over standard deviation or R/S statistic, also called the
"rescaled range," which was developed by Hurst (1951) in his studies of
river discharges . The R/S statistic is the range of partial sums of deviations
of a time series from its mean, rescaled by its standard deviation . Specifically,
consider a sample of returns Xi , X2, . . . , Xn and let X n denote the sample
mean (1/ n) ~~ X . Then the classical rescaled range statistic, denoted by

Q,,, is defined as

1

	

k

	

k

Q,~ - - Max ~ (X - Xn) - Min~ (X - Xn)

	

(6.3.1)
Sn 1<k<n

	

1<k< n
j=1

	

j=~

where sn is the usual (maximum likelihood) standard deviation estimator :

1/2
1

s η - ~ Σ (Χ~ - Χη) 2

	

(6.3.2)

The first term in brackets in (6.3 .1) is the maximum (over k) of the partial
sums of the first k deviations of X from the sample mean . Since the sum
of all n deviations of X's from their mean is zero, this maximum is always
nonnegative. The second term in (6.3.1) is the minimum (over k) of this
same sequence of partial sums ; hence it is always nonpositive . The differ-
ence of the two quan tities, called the "range" for obvious reasons, is always
nonnegative, hence Q,~ > ~,~2

~ o This has also been advanced as a definition of long-range dependence-see, for example,
Mandelbrot (1972) .

i ~ Note, Helson and Sarason (1967) only consider the case of linear dependence ; hence
their conditions are sufficient to rule out strong-mixing but not necessary . For example, white
noise may be approximated by a nonlinear deterministic time series (e .g . the tent map) and
will have constant spectral density, but will be strongly dependent . We are grateful to Lars
Hansen for pointing this out.

12 The behavior of Q,~ may be better understood by considering its origins in hydrological
studies of reservoir design . To accommodate seasonalities in riverflow, a reservoir's capacity
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In several seminal papers Mandelbrot, Tagqu, and Wallis demonstrate
the superiority of R/S analysis to more conventional methods of determin-
ing long-range dependence, such as analyzing autocorrelations, variance
ratios, and spectral decompositions . For example, Mandelbrot and Wallis
(1969a) show by Monte Carlo simulation that the R/S statistic can detect
long-range dependence in highly non-Gaussian time series with large skew-
ness and kurtosis . In fact, Mandelbrot (1972, 1975) reports the almost-sure
convergence of the R/S statistic for stochastic processes with infinite vari-
ances, a distinct advantage over autocorrelations and variance ratios which
need not be well-defined for such processes . Further aspects of the R/S
statistic's robustness are derived in Mandelbrot and Tagqu (1979) . Mandel-
brot (1972) also argues that, unlike spectral analysis which detects periodic
cycles, R/S analysis can detect nonperiodic cycles, cycles with periods equal
to or greater than the sample period .

Although these claims may all be contested to some degree, it is a well-
established fact that long-range dependence can indeed be detected by the
"classical" R/S statistic . However, perhaps the most important shortcoming
of the rescaled range is its sensitivity to short-range dependence, implying
that any incompatibility between the data and the predicted behavior of
the R/S statistic under the null hypothesis need not come from long-term
memory, but may merely be a symptom of short-term memory .

To see this, first observe that under a simple IID null hypothesis, it
is well-known (and is a special case of Theorem 6.3.1 below) that as n in-
creases without bound, the rescaled range converges in distribution to a
well-defined random variable V when properly normalized, i .e .,

1
Q,, ~ V

	

(6.3.3)

must be chosen to allow for fluctuations in the supply of water above the dam while still
maintaining a relatively constant flow of water below the dam . Since dam construction costs
are immense, the importance of estimating the reservoir capacity necessary to meet long term
storage needs is apparent. The range is an estimate of this quantity. If Xj is the riverflow

(per unit time) above the dam and Xn is the desired riverflow below the dam, the bracketed
quantity in (6 .3 .1) is the capacity of the reservoir needed to ensure this smooth flow given the
pattern of flows in periods 1 through n . For example, suppose annual riverflows are assumed
to be 100, 50, 100, and 50 in years 1 through 4 . If a constant annual flow of 75 below the dam
is desired each year, a reservoir must have a minimum total capacity of 25 since it must store 25
units in years 1 and 3 to provide for the relatively dry years 2 and 4 . Now suppose instead that
the natural pattern of riverflow is 100, 100, 50, 50 in years 1 through 4 . To ensure a flow of 75
below the dam in this case, the minimum capacity must increase to 50 so as to accommodate
the excess storage needed in years 1 and 2 to supply water during the "dry spell" in dears 3
and 4. Seen in this context, it is clear that an increase in persistence will increase the required
storage capacity as measured by the range . Indeed, it was the apparent persistence of "dry
spells" in Egypt that sparked Hurst's life-long fascination with the Nile, leading eventually to
his interest in the rescaled range .
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Table 6.2. Fractiles of the distribution F v(v) .

Ρ(V < ν)

	

.005

	

.025

	

.050

	

.100

	

.200

	

.300

	

.400

	

.500

ν

	

0.721

	

0.809

	

0.861

	

0.927

	

1.018

	

1 .090

	

1.157

	

1.223

Ρ(V < ν)

	

.543

	

.600

	

.700

	

.800

	

.900

	

.950

	

.975

	

.995

ν

	

2

	

1 .294 1 .374

	

1.473

	

1.620 1 .747

	

1.862 2.098

where "~" denotes weak convergence and V is the range of a Brownian
bridge on the unit interval . 13

Now suppose, instead, that {X~} were short-range dependent-for ex-
ample, let X be a stationary AR(1) ;~ 4

E~ = pE~-~ + ~~,

	

~~ ^' WN(0, ~~ )~

	

~pΙ E (0, 1) .

	

(6.3.4)

Although {~ t } is short-range dependent, it yields a Q, t that does not satisfy
(6.3 .3) . In_fact, it may readily be shown that for (6.3 .4) the limiting distri-
bution of Q,~/~ is ~ V where ~ - ,/(1 + p)/(1 - p) (see Proposition 6 .3 .1
below) . For some portfolios of common stock, p is as large as 50 percent,
implying that the mean of Q,~/~ may be biased upward by 73 percent!
Since the mean of V is ~/2 ti 1 .25, the mean of the classical resealed
range would be 2.16 for such an AR(1) process . Using the critical values
of V reported in Table 6.2, it is evident that a value of 2 .16 would yield a
rejection of the null hypothesis at any conventional significance level .

This should come as no surprise since the values in Table 6 .2 correspond
to the distribution of V, not ~ V . Now by taking into account the "short-term"
autocorrelations of the XD 's-by dividing Q,z by ~ for example-convergence
to V may be restored. But this requires knowledge of ~ which, in turn,
requires knowledge of p . Moreover, if X follows a short-range dependent
process other than an AR(1) , the expression for ~ will change, as Proposition
6.3.1 below shows. Therefore, correcting for short-range dependence on a
case-by-case basis is impractical . Ideally, we would like to correct for short-
term memory without taking too strong a position on what form it takes .
This is precisely what the modified resealed range of Section 6 .3 .1 does-its
limiting distribution is invariant to many forms of short-range dependence,
and yet it is still sensitive to the presence of long-range dependence .

~ s See Billingsley (1968) for the definition of weak convergence . We discuss the Brownian
bridge and V more formally below.

14 It is impliciily assumed throughout that white noise has a Lebesgue-integrable character-
istic function to avoid the pathologies of Andrews (1984) .
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Although aware of the effects of short-range dependence on the resealed
range, Mandelbrot (1972, 1975) did not correct for this bias since his fo-
cus was the relation of the R/S statistic's logarithm to the logarithm of the
sample size as the sample size increases without bound . For short-range de-
pendent time series such as strong-mixing processes the ratio log Q, l/log n
approaches 2 in the limit, but converges to quantities greater or less than 2
according to whether there is positive or negative long-range dependence .
The limit of this ratio is often denoted by H and is called the "Hurst" coeffi-
cient. For example, the fractionally-differenced process (6 .2 .1) satisfies the
simple relation: H = d +

2
.

Mandelbrot and Wallis (1969a) suggest estimating the Hurst coefficient
by plotting the logarithm of Q,~ against the logarithm of the sample size n .
Beyond some large n, the slope of such a plot should settle down to H.
However, although H = 2 across general classes of short-range dependent
processes, the finite-sample properties of the estimated Hurst coefficient are
not invariant to the form of short-range dependence . In particular, Davies
and Harte (1987) show that even though the Hurst coefficient of a station-
ary Gaussian AR(1) is precisely 2 , the 5 percent Mandelbrot regression test
rejects this null hypothesis 47 percent of the time for an autoregressive pa-
rameter of 0 .3. Additional Monte Carlo evidence is reported in Section 6 .5 .

6.3.1 The Modified R/S Statistic
To distinguish between long-range and short-range dependence, the R/S
statistic must be modified so that its statistical behavior is invariant over
a general class of short memory processes, but deviates for long memory
processes. This ~s accomplished by the following statistic Q,, :

1

	

k

	

k

	

1
Q,~ __	 Max ~ (X; - Xn ) - Min ~ (X - X n )

J

	

(6.3.5)
~~z(q) 1<k<n

	

1 <k< n
j=1

	

j=1

where

σή(q) = 1 Σ (Χ - Χη) 2
η

;-ι

4

	

η
+
η Σ ω;(q) Σ (Χ~ - Χη)(Χ~_ ; - Χη) ~

	

(6.3.6)
;-ι

	

~=;+ι

9

=σχ+2Σω;(4)Ύ;,

	

ω;(q>=1-q+l, q < η,

	

(6.3.7)

and ~~ and y; are the usual sample variance and autocovariance estimators
of X .
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differs from Q„ only in its denominator, which is the square root of a
consistent estimator of the partial sum's variance . If {Xt } is subject to short-
range dependence, the variance of the partial sum is not simply the sum of
the variances of the individual terms, but also includes the autocovariances .
Therefore, the estimator ~n (q) involves not only sums of squared deviations
of X~, but also its weighted autocovariances up to lag q . The weights ~~ (q) are
those suggested by Newey and West (1987) and always yield a positive ~ń (q),
an estimator of 2~ times the (unnormalized) spectral density function of X~
at frequency zero using a Bartlett window. Theorem 4 .2 of Phillips (1987)
demonstrates the consistency of ~n(q) under the following conditions :~ s

(A2') supE[~~1~2~] < oo for some ß > 2 .

(A5) As n increases without bound, q also increases without bound such
that q ^- o(n~~ 4 )

By allowing q to increase with (but at a slower rate than) the number of
observations n, the denominator of Q,z adjusts appropriately for general
forms of short-range dependence . Of course, although the conditions (A2')
and (A5) ensure the consistency of ~ 2 (q), they provide little guidance in
selecting a truncation lag q. Monte Carlo studies such as Andrews (1991) and
Lo and MacKinlay (1989a) have shown that when q becomes large relative
to the sample size n, the finite-sample distribution of the estimator can be
radically different from its asymptotic limit . However q cannot be chosen
too small since the autocovariances beyond lag q may be substantial and
should be included in the weighted sum . Therefore, the truncation lag must
be chosen with some consideration of the data at hand. Andrews (1991)
does provide a data-dependent rule for choosing q, however its minimax
optimality is still based on an asymptotic mean-squared error criterion-
little is known about how best to pick q in finite samples . Some Monte Carlo
evidence is reported in Section 6 .5 .

Since there are several other consistent estimators of the spectral density
function at frequency zero, conditions (A2') and (A5) can be replaced with
weaker assumptions if conditions (Al ) , (A3) , and (A4) are suitably modified .
I~ for example, X~ is m-dependent (so that observations spaced greater than
m periods apart are independent), it is well-known that the spectral den-
sity at frequency zero may be estimated consistently with a finite number
of unweighted autocovariances (see, for example, Hansen, 1982, Lemma
3.2) . Other weighting functions may be found in Hannan (1970, Chapter
V 4) and may yield better finite-sample properties for Q,, than the Bartlett

~ 5~drews (1991) has improved the rate restriction in (A5) to o(n t ~2 ), and it has been
conjectured that o(n) is sufficient.
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window without altering the limiting null distribution derived in the next
section, ~s

6.3.2 The Asymptotic Distribution of Q, Z

To derive the limiting distribution of the modified rescaled range Q,, under
our null hypothesis, consider the behavior of the following standardized
partial sum :

Wn (~) __	1 Sl ni l,

	

~ E [0, 1],

	

(6.3.8)
~~

where Sk denotes the partial sum ~~ ~ ~~ and [n~] is the greatest integer
less than or equal to n~ . The sample paths of Wn(~) are elements of the
function space D [0, 1 ] , the space of all real-valued functions on [0, 1 ] that
are right-continuous and possess finite left limits . Under certain conditions
it may be shown that Wn(~) converges weakly to a Brownian motion W(~)
on the unit interval, and that well-behaved functionals of Wn (~) converge
weakly to the same functionals of Brownian motion (see Billingsley, 1968,
for further details) . Armed with these results, the limiting distribution of
the modified rescaled range may be derived in three easy steps, summarized
in the following theorem .~~

Theorem 6.3.1 18 If {~ t } satisfies assumptions (AI), (AZ"), (A3)-(AS), then as n
increases without bound:

1

	

~
(a) Max	~ (X - Xn ) ~ Max W°(~) = M°,

1</~< n ~n(q)~
1-1

	

0<_~cl

1

	

k

(b) Min	 ~(

	

Xn) ~ Min W°(~) = m°,
~<~<n dnO~

	

`~

	

o«<~4

	

~-~
1

(c) ~Qn~ M°-m°-V.
n

Parts (a) and (b) of Theorem 6.3 .1 follow from Lemmas A.1 and A.2 of
the Appendix, and Theorem 4 .2 of Phillips (1987), and show that the max-
imum and minimum of the partial sum of deviations of X from its mean
converge respectively to the maximum and minimum of the celebrated
Brownian bridge W°(~) on the unit interval, also called "pinned" or "tied-
down" Brownian motion because W°(0) = W°(1) = 0 . That the limit of

~ s For example, Andrews (1991) and Gallant (1987) both advocate the use of Parzen weights,
which also yields a positive semi-definite estimator of the spectral density at frequency zero but
is optimal in an asymptotic mean-squared error sense.

	

_
i~Mandelbrot (1975) derives similar limit theorems for the statistic Qn under the more

restrictive IID assumption, in which case the limiting distribution will coincide with that of Q,, .
Since our null hypothesis includes weakly dependent disturbances, we extend his results via
the more general functional central limit theorem of Herrndorf (1984, 1985) .

18 Proofs of theorems are given in the Appendix .
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the partial sums is a Brownian bridge is not surprising since the summands
are deviations from the mean and must therefore sum to zero at k = n.
Part (6.3 .1) of the theorem follows immediately from Lemma A .2 and is the
key result, allowing us to perform large sample statistical inference once the
distribution function for the range of the Brownian bridge is obtained . This
distribution function is implicitly contained in Feller (1951), and is given
explicitly by Kennedy (1976) and Siddiqui (1976) as 19

φ 2
FV(ν) = 1 + 2 Σ(1 - 4k2ν2)e2(kv) .

k=1
(6.3.9)

Critical values for tests of any significance level are easily obtained from
this simple expression (6 .3 .9) for Fv . The values most commonly used are
reported in Table 6 .2. The moments of V may also be readily computed from
(6.3.9) ; a simple calculation shows that E[ V] _ ~/~/2 and E[ V 2 ] _ X 2/6,
thus the mean and standard deviation of V are approximately 1 .25 and 0.27
respectively. Plots of F~ and fV are given in Figure 6 .1, along with Gaussian
distribution and density functions (with the same mean and variance as V)
for comparison . The distribution of V is positively skewed and most of its
mass falls between 4 and 2 .

6.3.3 The Relation Between Q,, and Q,,

Since Q,, and Q~, differ solely in how the range is normalized, the limiting
behavior of our modified R/S statistic and Mandelbrot's original will only
coincide when ~n(q) and sn are asymptotically equivalent . From the defi-
n~tions of ~n(q) and sn , it is apparent that the two will generally converge
in probability to different limits in the presence of autocorrelatio_n. There-
fore, under the weakly dependent null hypothesis the statistic Q, 2/~ will
converge to the range V of a Brownian bridge multiplied by some constant .
More formally, we have the almost trivial result :

Proposition 6.3 .1 . If lim n~~ E [~~ t ~~ / n] is finite and positive, then under as-
sumptions (A1)-(A4), Q,,/~ ~ ~V where

ι

	

2
limn~φ Ε ή

\Σ~
t ε~)

ξ2 =

	

		(6.3 .10)
limη~ φ Ε[ήΣ~t ~~]

Therefore, normalizing the range by sn in place of ~n (q) changes the
limiting distribution of the rescaled range by the multiplicative constant

~sWe are grateful to David Aldous and Yin-Wong Cheung for these last two references .
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F„(v) and f„(v)
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Figum 6.1 . Distribution and density function of the range V of a Brownian bridge. Dashed
curves are the normal distribution and density functions with mean and variance equal to
those of V (~/~/2 and X 2 16 respectively) .

~ . This result was used above to derive the limiting distribution of Q, t in
the AR(1) case, and closed-form expressions for ~ for general stationary
ARMA(p, q) processes may readily be obtained using (6.3.10) .

Since it is robust to many forms of heterogeneity and weak depen-
dence, tests based on the modified _R/S statistic Q,Z cover a broader set
of null hypotheses than those using Q,, . More to the point, the modified
rescaled range is able to distinguish between short-range and long-range
dependence-the classical rescaled range cannot. Whereas an extreme
value for Qn in_dicates the likelihood of long-range dependence, a rejection
based on the Qjz statistic is also consistent with short-range dependence in
the data. Of course, it is always possible to tabulate the limiting distribution
of the classical R/S statistic under a particular model of short-range de-
pendence, but this obviously suffers from the drawback of specificity . The
modified rescaled range converges weakly to the range of a Brownian bridge
under general forms of weak dependence .

Despite its sensitivity to short-range dependence, the classical R/S statis-
tic may still be used to test for independently and identically distributed Xt 's .
Indeed, the AR(1) example of Section 6 .3 and the results of Davies and
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Harte (1987) suggest that such a test may have considerable power against
non-IID alternatwes . However, since there is already a growing consensus
among financial economists that stack market prices are not independently
and identically distributed, this null hypothesis is of less immediate interest .
For example, it is now well-known that aggregate stock market returns ex-
hibit significant serial dependence for short-horizon holding periods and
are therefore not independently distributed .

6.3.4 The Behavior of Q,Z Under Long Memory Alternatives

To complete the analysis of the modified resealed range, its behavior under
long-range dependent alternatives remains to be investigated . Although this
depends of course on the specific alternative at hand, surprisingly general
results are available based on the following result from Taqqu (1975) .

Theorem 6.3.2 (Taqqu) . Let {~~} be a zero-mean stationary Gaussian stochastic pro-
cess such that:

~n - Var[Sn ] ^~ n2HL(n)

	

(6.3.11)

where Sn is the partial sum ~~ i ~~, H E (0, 1), and L(n) is a slowly varying
function at infinity . Define the following function on D [0, 1 ]

1
Wn(τ) _ - s~n=~,ση

τ Ε (0, 1) .

	

(6.3.12)

Then W~(~) ~ WH(~), where WF~(~) is a fractional Brownian motion of order H
on [0, 1] .

Theorem 6.3.2 is a functional central limit theorem for strongly depen-
dent processes, and is only a special case of Tagqu's (1975) considerably
more general results. In contrast to the usual functional central limit the-
orem in which properly normalized partial sums converge to a standard
Brownian motion, Theorem 6 .3.2 states that long-range dependent partial
sums converge weakly to a fractional Brownian motion, first defined by Man-
delbrot and Van Ness (1968) as the following stochastic integral :

WH(~) _-	1

	

J
~(~ - x)~

-
2 dW(x) .

	

(6.3.13)
~~H+2} o

Observe that when H = 2, Wx(~) reduces to a standard Brownian motion .
In that case, there is no long-range dependence, the variance of the partial
sums grows at rate n, and the spectral density at frequency zero is finite and
positive . If H E ( 2 , 1) (H ~ (0, 2) ) , there is positive (negative) long-range
dependence, the variance grows faster (slower) than n, hence the spectral
density at frequency zero is infinite (zero) .
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In a fashion analogous to Theorem 6 .3.1, the behavior of Qn under
long-range dependent alternatives may now be derived in several steps using
Lemmas A.2, A.3, and Theorem 6 .3 .2 :

Theorem 6.3.3. Let {~ t } be a zero-mean stationary Gaussian stochastic process with
autocovariance function yk such that

yk ..!
k2x-2L(k) for H ~ (2 , 1) or,

{ _ k2x-2L(k) for H E (0, 2 )
as

	

k ~ φ (6.3.14)

where L(k) is a slowly varying function at infinity. Then as n and q increase without
bound such that (q/ n) ~ 0, we have:

1

	

k

(α)

	

Μαχ - Σ (

	

Χπ) ~ Μαχ ωi,(τ) = Μχ,
1_<k_<η ση

	

~

	

0<τη
j=1

1

	

k
(b)

	

Min - Σ (

	

Χη) ~ Min W~(τ) = mH,
ι<k<η ση

	

~

	

ο« <ι
~-ι

ση(q)~ 1
( ~ )

	

Rrz =

	

~ ~ Μχ - m}{ = VN,σ η
_

	

ση

	

ρ

	

(οο forH Ε (2, 1),
(d)

	

αη
~η(q)~ ~

	

0 forH Ε (0, 2),

1

	

_

	

(οο forH Ε (2, 1),
j
l

e( )

	

~

	

0 forH Ε (0, 2),

where ~n(q) is defined in (6.3.6), ~ n is defined in Theorem 6.3.2, and WH(~)
WH(~) - ~WH(1) . 20

Theorem 6 .3 .3 shows that the modified rescaled range test is consistent
against a class of long-range dependent stationary Gaussian alternatives . In
the presence of positive strong dependence, the R/S statistic dwerges in
probability to infinity ; in the presence of negative strong dependence, it
converges in probability to zero . In either case, the probability of rejecting
the null hypothesis approaches unity for all stationary Gaussίan stochastic
processes satisfying (6 .3 .14), a broad set of alternatives that includes all
fractionally-differenced Gaussian ARIMA(p, d, q) models with d E (- 2 , 2) .

From (a) and (b) of Theorem 6 .3.3 it is apparent that the normalized
population rescaled, R,,/~, converges to zero in probability. Therefore,

20 Although it is tempting to call Wy (~) a "fractional Brownian bridge," this is not the most
natural definition despite the fact that it is "tied down." See Jonas (1983, Chapter 3.3) for a
discussion .
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whether or not Q,Z/~ approaches zero or infinity in the limit depends
entirely on the limiting behavior of the ratio ~ n/~ n (q) . That is,

Q~,

	

ση R„
~ -

ση(q)
~

	

(6 .3 .15)

so that if the ratio ~n/~ n(q) diverges fast enough to overcompensate for the
convergence of Rn/~ to zero, then the test will reject in the upper tail,
otherwise it will reject in the lower tail. This is determined by whether d lies
in the interval (0, 2 ) or (-2 , 0) . When d = 0, the ratio ~n/~n(q) converges to
unity in probability and, as expected, the normalized R/S statistic converges
in distribution to the range of the standard Brownian bridge .

Of course, if one is interested exclusively in fractionally-differenced
alternatives, a more efficient means of detecting long-range dependence
might be to estimate the fractional differencing parameter directly. In such
cases, the approaches taken by Geweke and Porter-Hudak (1983), Sowell
(1990), and Yajima (1985, 1988) may be preferable . The modified R/S
test is perhaps most useful for detecting departures into a broader class
of alternative hypotheses, a kind of "portmanteau" test statistic that may
complement a comprehensive analysis of long-range dependence .

6.4 R/S Analysίs for Stock Market Returns

The importance of long-range dependence in asset markets was first consid-
ered byMandelbrot (1971) . More recently, the evidence uncovered by Fama
and French (1988) , Lo and MacKnlay (1988b) , and Poterba and Summers
(1988) may be symptomatic of a long-range dependent component in stock
market prices . In particular, Lo and MacKinlay (1988b) show that the ratios
of k-week stock return variances to k times the variance of one-week returns
generally exceed unity when k is small (2 to 32) . In contrast, Poterba and
Summers (1988) find that this same variance ratio falls below one when k is
much larger (96 and greater) .

To see that such a phenomenon can easily be generated by long-range
dependence, denote by X~ the time-t return on a stock and let it be the sum
of two components Xat and Xb ~ where

(1 - L)dΧαι = Εα>

	

(1 - ρΖ)Χαι = ηι,

	

(6.4.1)

and assign the values (-0 .2, 0.25, 1, i .l) to the parameters (d, p, ~É , ~~ ) .
Let the ratio of the k-period return variance to k times the variance of X~
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be denoted by VR(k) . Then a simple calculation will show that for the
parameter values chosen :

VR(2) = 1 .04, VR(10) = 10.4,
VR(3) = 1 .06, VR(50) = 0.97,
VR(4) = 1 .07, VR(100) = 0 .95,
VR(5) = 1 .06,

	

VR(250) = 0.92 .

The intuition for this pattern of variance ratios comes from observing that
VR(k) is a weighted sum of the first k - 1 autocorrelation coefficients of Xt
with linearly declining weights (see Lo and MacKinlay, 1988b) . When k is
small the autocorrelation of X~ is dominated by the positively autocorrelated
AR(1) component Xb t . But since the autocorrelations of Xb l decay rapidly
relative to those of ~ 1 , ask grows the influence of the long-memory compo-
nent eventually outweighs that of the AR(1) , ultimately driving the variance
ratio below unity.

6.4. I The Evidence fir Weekly and Monthly Returns

Greene and Fielitz (1977) were perhaps the first to apply R/S analysis to
common stock returns. More recent applications include Booth and Kaen
(1979) (gold prices), Booth, Kaen, and Koveos (1982) (foreign exchange
rates), and Helms, Kaen, and Rosenman (1984) (futures contracts) . These
and earlier applications of R/S analysis by Mandelbrot and Wallis (1969a)
have three features in common : (1) They provide no sampling theory with
which to jVudge the statistical significance of their empirical results ; (2) they
use the Q,t statistic which ~s not robust to short-range dependence ; and
(3) they do not focus on the R/S statistic itself, but rather on the regression
of its logarithm on (sub)sample sizes . The shortcomings of (1) and (2)
are apparent from the discussion in the preceding sections . As for (3),
Davies and Harte (1987) show such regression tests to be significantly biased
toward rejection even for a stationary AR(1) process with an autoregressive
parameter of 0.3 .

To test for long-term memory in stock returns, we use data from the
Center for Research in Security Prices (CRSP) monthly and daily returns
files. Tests are performed for the value- and equal-weighted CRSP indexes .
Daily observations for the returns indexes are available from July 3, 1962, to
December 31, 1987 yielding a sample size of 6,409 observations . Monthly
indexes are each composed of 744 observations from January 30, 1926, to
December 31, 1987. The following statistic is computed for the various
returns indexes :

Vn(q) _- ~ Qn ti V,

	

(6.4.2)
n

where the distribution Fv of V is given in (6 .3 .9) . Using the values in Table
6.2 a test of the null hypothesis may be performed at the 95 percent level
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of confidence by accepting or rejecting according to whether V n is or is not
contained in the interval [0.809, 1 .862] which assigns equal probability to
each tail .

Vn (q) is written as a function of q to emphasize the dependence of the
modified rescaled range on the truncation lag . To check the sensitivity of
the statistic to the lag length, Un(q) is computed for several different values
of q . The normalized classical Hurst-Mandelbrot rescaled range Vn is also
computed for comparison, where

Vn - ~ Q,Z ~, ~ V .

	

(6.4.3)

Table 6.3 reports results for the daily equal- and value-weighted returns
indexes. The panel labelled "Equal-Weighted" contains the Vn (q) and Vn
statistics for the equal-weighted index for the entire sample period (the
first row), two equally-partitioned sub-samples (the next two rows), and
four equally-partitioned sub-samples (the next four rows) . The modified
rescaled range is computed with q-values of 90, 180, 270, and 360 days. The
columns labelled "%-Bias" report the estimated bias of the original rescaled
range Vn , and is 100 • (~ - 1) where ~ _ ~n (q)/sn = Vn/Vn . _

Although Table 6.3 shows that the classical R/S statistic Un is statistically
significant at the 5 percent level for the daily equal-_weighted CRSP returns
index, the modified R/S statistic Un is not. While Vn is 2.63 for the entire
sample period the modified R/S statistic is 1 .46 with a truncation lag of
90 days, and 1 .50 with a truncation lag of 360 days. The importance of
normalizing by ~n(q) is clear-dividing by sn imparts a potential upward
bias of 80 percent!

The statistical insignificance of the modified R/S statistics indicates that
the data are consistent with the short-memory null hypothesis . The stability
of the Un (q) across truncation lags q also supports the hypothesis that there
is little dependence in daily stock returns beyond one or two months . For
example, using 90 lags yields a Vn of 1 .46 whereas 270 and 360 lags both
yield 1 .50, virtually the same point estimate . The results are robust to the
sample period-none of the sub-period Un(q)'s are significant. The classical
rescaled range is significant only in the first half of the sample for the value-
weighted index, and is insignificant when the entire sample is used .

Table 6.4 reports similar results for monthly returns indexes with four
values of q employed : 3, 6, 9, and 12 months. None of the modified R/S
statistics are statistically significant at the 5 percent level in any sample period
or sub-period for either index . The percentage bias is generally lower for
monthly data, although it still ranges from -0.2 to 25 .3 percent .

To develop further intuition for these results, Figure 6.2 contains the
autocorrelograms of the daily and monthly equal-weighted returns indexes,
where the maximum lag is 360 for daily returns and 12 for monthly. For both



Table 6.3 . R/S analysis of daily equal- and value-weighted CRSΡ stock returns indexes from July 3, 1962, to December 31,

1987 using the classical resealed range V~ and the modified resealed range Vn (q) . Entries in the %-bias columns are computed

as [(Vn/ V~(q)) - 1] • 100, and are estimates of the bias of the classical R/S statistic in the presence of short-term dependence .

Asterisks indicate significance at the 5 percent level.

Time Period
Sample

Size
Vn

	

V„(90) %-Bias Vn (180) %-Bias Vn(270) %-Bias Vn(360) %-Bias

Equal-Weighted :

620703-871231

	

6409

	

2.63*

	

1 .46

	

79.9

	

1 .45

	

81.1

	

1.50

	

75.2

	

1 .50

	

75.4

620703-750428

	

3204

	

3.18*

	

1 .61

	

97.0

	

1 .57

	

102.0

	

1.63

	

95.2

	

1 .62

	

96.8

750429-871231

	

3205

	

1.45

	

0.92

	

57.2

	

0.97

	

49.0

	

1.05

	

38.5

	

1 .14

	

27.3

620703-681217 1602 2.40* 1 .39 72.2 1 .46 64.7 1.72 39.7 1 .78 34.8

681219-750428 1602 2.03* 1 .07 90.7 1 .10 84.9 1.19 70.6 1.23 65.3

750428-810828 1602 1 .35 0.89 51 .6 1 .23 9.5 1.49 -9.2 1 .71 -21.0

810831-871231

	

1603

	

1 .79

	

1 .15

	

55.8

	

1 .10

	

62.4

	

1.18

	

51 .6

	

1.27

	

41 .4

Value-Weighted:

620703-871231

	

6409

	

1 .55

	

1.29

	

20.8

	

1 .26

	

22 .9

	

1 .30

	

19.1

	

1.33

	

16.8

620703-750428

	

3204

	

1 .97*

	

1.43

	

37.3

	

1.39

	

41 .4

	

1 .43

	

37.5

	

1.45

	

35.5

750429-871231

	

3205

	

1 .29

	

1.22

	

5.8

	

1.24

	

4.1

	

1 .32

	

-2.3

	

1.42

	

-9.4

620703-681217 1602 1 .67 1.43 16.8 1.45 15 .3 1 .62 3.4 1.69 -1 .3

681219-750428 1602 1 .85 1.34 38.2 1.34 38.2 1 .40 31.7 1.45 27.1
750428-810828 1602 1 .08 1.12 -3.7 1.26 -14.7 1 .34 -19.4 1.42 -24.2

810831-871231

	

1603

	

1.50

	

1 .38

	

8.8

	

1.37

	

9.2

	

1 .50

	

-0.3

	

1 .63

	

-8.0



Table 6 .4 . R/S analysis of monthly equal- and value-weighted CRSP stock returns indexes from fanuary 30, 1926, to
December3l, 1987, using the classical resealed range Vn and the modified resealed range Vn (q) . Entries in the %-bias columns
are c~mfiuted as [(Vn l Vn (q)) - 1] • 100, and are estimates of the bias of the classical R/S statistic in the firesence of short-term
dependence. Asterisks indicate significance at the 5 percent level .

Time Period
Sample
Size Vn

	

Vn(3)

	

%-Bias

	

V~(6)

	

%-Bias Vn(9) %-Bias

	

Vn(12)

	

%-Bias

Equal-Weighted:

260130-871231

	

744

	

1 .17

	

1.07

	

9.1

	

1.10

	

6.6

	

1.09

	

7.2

	

1.06

	

10.4

260130-561231

	

372

	

1 .32

	

1 .21

	

9.4

	

1.26

	

5 .1

	

1.24

	

7.1

	

1 .18

	

12.1
570131-871231

	

372

	

1 .37

	

1 .26

	

8.4

	

1 .23

	

11 .1

	

1 .27

	

7.6

	

1 .30

	

5.2

260130-410630 186 1.42 1 .31 8 .3 1 .40 1 .6 1 .39 2 .6 1 .32 8.0
410731-561231 186 1.60 1 .42 13 .1 1 .34 20.0 1 .28 25.3 1.28 25.1
570131-720630 186 1.20 1 .04 15 .9 0.99 21 .9 1 .03 17.4 1.07 12.3
720731-871231

	

186

	

1.57

	

1 .51

	

3.8

	

1 .51

	

4.3

	

1 .55

	

L2

	

1 .57

	

-0.2

Value-Weighted:

260130-871231

	

744

	

1.33

	

1 .27

	

4.5

	

1 .26

	

5.5

	

1 .22

	

8.4

	

1.19

	

11 .1

260130-561231

	

372

	

1.57

	

1 .51

	

4.5

	

1 .51

	

4.3

	

1 .44

	

9.5

	

1.38

	

14.5
570131-871231

	

372

	

1.28

	

1 .22

	

4.4

	

1 .18

	

7.9

	

1 .21

	

5.6

	

1.24

	

2.7

260130-410630 186 1.57 1 .52 3 .2 1 .55 1.0 1.49 5.5 1.42 10.6
410731-561231 186 1 .26 1.18 6.4 1 .11 12 .9 1 .07 17.1 1.08 16.1
570131-720630 186 1 .05 0.96 9.3 0.92 14.7 0.95 10.9 1.01 4.7
720731-871231

	

186

	

1 .51

	

1.48

	

1.6

	

1.45

	

4.0

	

1.47

	

2.4

	

1.49

	

1.1
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Figure 6.2. Autocorrelograms of equally-weighted CRSP daily and monthly stock returns
indexes and fractionally-differenced process with d = 1/4 . The sample period for the daily
index is July 1962 to December 1987, and is January 1926 to December 1987 for the monthly
index.

indexes only the lowest order autocorrelation coefficients are statistically sig-
nificant . For comparison, alongside each of the index's autocorrelogram
is the autocorrelogram of the fractionally-differenced process (6.2 .1) with
d = .25 and the variance of the disturbance chosen to yield a first-order auto-
correlation of3 . Although the general shapes of the fractionally-differenced
autocorrelograms seem consistent with the data, closer inspection reveals
that the index autocorrelations decay much more rapidly Therefore, al-
though short-term correlations are large enough to drive Q n and Q,Z apart,
there is little evidence of long-range dependence in Q,, itself .

Additional results are available for weekly and annual stock returns data
but since they are so similar to those reported here, we have omitted them to
conserve space . Although the annual data spans 115 years (1872 to 1986) ,
neither the classical nor the modified R/S statistics are statistically significant
over this time span .
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The evidence in Tables 6 .3 and 6.4 shows that the null hypothesis of
short-range dependence cannot be rejected by the data-there is little sup-
port for long-term memory in U.S. stock returns . With adjustments for
autocorrelation at lags up to one calendar year, estimates of the modified
rescaled range are consistent with the null hypothesis of weak dependence .
This reinforces Kandel and Stambaugh's (1989) contention that the long-
run predictability of stock returns uncovered by Fama and French (1988)
and Poterba and Summers (1988) may not be "long-run" in the time series
sense, but may be the result of more conventional models of short-range
dependence . 21 Of course, since our inferences rely solely on asymptotic
distribution theory, we must check our approximations before dismissing
the possibility of long-range dependence altogether . The finite-sample size
and power of the modified rescaled range test are considered in the next
sections .

6 .5 Size and Power

To explore the possibility that the inability to reject the null hypothesis of
short-range dependence is merely a symptom of low power, and to check
the quality of Section 6 .3's asymptotic approximations for various sample
sizes, we perform several illustrative Monte Carlo experiments . Section
6.5.1 reports the empirical size of the test statistic under two Gaussian null
hypotheses: IID and AR(1) disturbances . Section 6.5.2 presents power
results against the fractionally-differenced process (6.2 .1) for d = 3 and

3

6.5.1 The Size of the R/S Test

Table 6.5a contains simulation results for the modified R/S statistic with sam-
ple sizes of 100, 250, 500, 750, and 1,000 under the null hypothesis of inde-
pendently and identically distributed Gaussian errors . All simulations were
performed on an IBM 4381 in double precision using the random generator
G05DDF from the Numerical Algorithms Group Fortran Library Mark 12 .
For each sample size the statistic Vn (q) is computed with q = 0, 5, 10, 25, 50,
and with q chosen by Andrews' (1991) data-dependent formula :

q = fknl,

	

kn =-
~2/s •\ 1

2
ρ2/

	

(6.5.1)

2~ Moreover, several papers have suggested that these long-run results may be spurious . See,
for example, Kim, Nelson, and Startz (1991), Richardson (1993), and Richardson and Stock
(1990) .
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where [kn ] denotes the greatest integer less than or equal to kn , and p is the
estimated first-order autocorrelation coefficient of the data . 22 (Note that
this is an optimal truncation lag only for an AR(1) data-generating process-
a different expression obtains i~ for example, the data-generating process
were assumed to be an ARMA(1,1) . See Andrews (1991) for further details . )
In this case, the entry reported in the column labelled "q" is the mean of the
q's chosen, with the population standard deviation reported in parentheses
below the mean. When q = 0, Vn(q) is identical to Mandelbrot's classical
R/S statistic Vn .

The entries in the last three columns of Table 6 .5a show that the classical
R/S statistic tends to reject too frequently-e_ven for sample sizes of 1,000 the
empirical size of a 5 percent test based on Vn is 5.9 percent. The modified
R/S statistic tends to be conservative for values of q that are not too large
relative to the sample size. For example, with 100 observations and 5 lags
the empirical size of the 5 percent test using Un(q) is 2 .1 percent. However,
with 50 lags this test has a rejection rate of 31 percent! That the sampling
properties worsen with the number of lags is not surprising-the imprecision
with which the higher-order autocovariances are estimated can introduce
considerable noise into the statistic (see, for example, Lo and MacKinlay,
1989b) . But for 1,000 observations and 5 lags, the size of a 5 percent test
based on Un (q) is 5 .1 percent. Andrews' procedure yields intermediate
results, with sizes in between those of the classical R/S statistic and the
closest of the modified R/S statistics .

Table 6.5b reports the results of simulations under the null hypothesis
of a Gaussian AR(1) with autoregressive coefficient 0 .5 (recall that such a
process is weakly dependent) . The last three columns confirm the example
of Section 6.3 and accord well with the results of Davies and Harte (1987) :
tests based on the classical R/S statistic have considerable power against an
AR(1) null. In samples o_f only 100 observations the empirical size of the
5 percent test based on Vn is 38 percent and increases to 62 percent for
sample sizes of 1,000. In contrast, the empirical sizes of tests based on Vn(q)
are much closer to their nominal values since the geometrically declining
autocorrelations are taken into account by the denominator ~n(q) of Un(q) .
When q is chosen via Andrews' procedure, this yields conservative test saes,
ranging from 2 .8 percent for a sample of 100, to 4 .3 percent for a sample of
1,000 .

22~~r this procedure, the Newey-West autocorrelation weights (6.3 .7) are replaced by those
suggested by Andrews (1991) :

ω~ = 1-
kn
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Table 6 .Sa. Finite sample distribution of the modified R/S statistic under an IID null hy-
pothesis . Each set of rows of a given sample size n corresponds to a separate and independent
Monte Carlo experiment based on 10, 000 replications . A lag q of 0 corresponds to Mandelbrot's
classical R/S statistic, and a noninteger lag value indicates the mean lag (standard devia-
tion given in parentheses) chosen via Andre~~s' (1991) data-dependent procedure assuming an
AR(1) data-generating process . Standard errors for the empirical size may be computed using
the usual normal approximation : they are 9 .95 x 10-4 , 2.18 x 10 -~, and 3.00 x 10 - ~ fir
the 1 %, 5%, and 10% tests respectively .

n

	

q

	

Min

	

Max Mean S.D .
Size

	

Size

	

Size
1%-Test

	

5%-Test 10%-Test

100

	

0

	

0.534 2.284

	

1 .144 0.263

	

0.029

	

0.095

	

0.153

100

	

5

	

0.649

	

1 .913

	

1 .179

	

0.207

	

0.002

	

0.021

	

0.050

100

	

10

	

0.710

	

1 .877

	

1 .223

	

0.175

	

0.000

	

0.003

	

0.012

100

	

25

	

0.858

	

2.296

	

1 .383 0.186

	

0.001

	

0.014

	

0.039

100

	

50

	

0.918

	

3.119

	

1 .694 0.360

	

0.137

	

0.313

	

0.414

100

	

0.97

	

0.557

	

2.164

	

1 .150 0.247

	

0.019

	

0.070

	

0.127

(0.83)

250

	

0

	

0.496 2.527

	

1.183

	

0.270

	

0.021

	

0.075

	

0.133

250

	

5

	

0.580 2.283

	

1.196 0.243

	

0.008

	

0.041

	

0.089

250

	

10

	

0.654 2.048

	

1.211

	

0.221

	

0.003

	

0.021

	

0.054

250

	

25

	

0.757

	

1.905

	

1.264 0.176

	

0.000

	

0.001

	

0.006

250

	

50

	

0.877 2206 . 1 .372 0.169

	

0.000

	

0.005

	

0.020

250

	

0.97

	

0.497 2.442

	

1 .185

	

0.263

	

0.017

	

0.064

	

0.120

(0.83)

500

	

0

	

0.518

	

2.510

	

1 .201

	

0.267

	

0.015

	

0.061

	

0.117

500

	

5

	

0.589 2.357

	

1 .207 0.252

	

0.008

	

0.047

	

0.094

500

	

10

	

0.630 2.227

	

1.215 0.240

	

0.004

	

0.032

	

0.073

500

	

25

	

0.677 2.051

	

1 .240 0.210

	

0.000

	

0.008

	

0.029

500

	

50

	

0.709

	

1.922

	

1 .285 0.176

	

0.000

	

0.001

	

0.005

500

	

0.96

	

0.549

	

2.510

	

1 .202

	

0.263

	

0.014

	

0.057

	

0.112

(0.82)

750

	

0

	

0.558

	

2.699

	

1 .207 0.270

	

0.014

	

0.061

	

0.120

750

	

5

	

0.597 2.711

	

1 .212

	

0.260

	

0.009

	

0.049

	

0.101

750

	

10

	

0.615

	

2.553

	

1 .217 0.251

	

0.006

	

0.039

	

0.087

750

	

25

	

0.677 2.279

	

1 .235 0.228

	

0.001

	

0.017

	

0.052

750

	

50

	

0.758

	

1 .971

	

1 .266 0.198

	

0.000

	

0.002

	

0.015

750

	

0.96

	

0.558 2.670

	

1 .208 0.268

	

00.013

	

0.058

	

0.117

(0.83)

(continued)
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Table 6.Sa. (continued)

η

	

4 Min

	

Max Mean S.D .

	

Size

	

Size

	

Size
1 %-Test 5%-Test 10%-Test

1000

	

0

	

0.542 2.577 1 .211

	

0.270

	

0.014

	

0.059

	

0.113
1000

	

5

	

0.566 2.477 1 .214 0.262

	

0.011

	

0.051

	

0.103
1000

	

10

	

0.570 2.405 1 .218 0.256

	

0.008

	

0.045

	

0.089

1000 25 0.616 2.203 1 .231 0.237 0.003 0.025 0.061
1000 50 0.716 2 .036 1 .253 0.211 0.000 0.007 0.029
1000

	

0.96

	

0.549 2 .546 1 .212 0.268

	

0.012

	

0.056

	

0.111
(0.81)

6.5.2 Power Against Fractionally Differenced Alternatives

Tables 6.6a and b report the power of the R/S tests against the Gaussian
fractionally-differenced alternative :

( 1 - L) dει = ηt, η~ IID Ν(0, σή), (6.5 .2)

withd= Sand-3,and~~ =~ 2 (1-d)/~(1-2d)soastoyieldaunitvariance
for ~ t . For sample sizes of 100, tests based on Vn(q) have very little power,
but when the sample size reaches 250 the power increases dramatically.
According to Table 6 .6a, the power of the 5 percent testwith q = 5 against the
d = 3 alternative is 33.5 percentwith 250 observations, 62 .8 percentwith 500
observations, and 84 .6 percent with 1,000 observations . Although Andrews'
automatic truncation lag procedure is generally less powerful, its power is
sti1163 .0 percent for a sample size of 1,000. Also, the rejections are generally
in the right tail of the distribution, as the entries in the "Max" column
indicate . This is not surprising in light of Theorem 6 .3.3, which shows that
under this alternative the modified R/S statistic diverges in probability to
infinity.

For a fixed sample size, the power of the Vn (q)-based test declines as the
number of lags is increased . This ~s due to the denominator ~n (q), which
generally increases with q since there is positive dependence when d = 3 .
The increase in the denominator decreases the mean and variance of the
statistic, shifting the distribution towards the left and pulling probability
mass from both tails, thereby reducing the frequency of draws in the right
tail's critical region, where virtually all the power is coming from .

Against the d = - 3 alternative, Table 6 .6b shows that the test seems
to have somewhat higher power. However, in contrast to Table 6 .6a the
rejections are now coming from the left tail of the distribution, as Theorem
6.3.3 predicts. Although less powerful, tests based on Andrews' procedure
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Table 6.Sb . Finite sample distribution of the modified R/S statistic under an AR ( 1) null hy-
pothesis with autoregressive coefficient 0.5 . Each set of rows of a given sample size n corresponds
to a separate and independent Monte Carlo experiment based on 10, 000 replications . A lag q
of 0 corresponds to Mandelbrot 's classical R/S statistic, and a noninteger lag value indicates
the mean lag (standard deviation given in parentheses) chosen via Andrews' (1991) data-
dependent procedure, assuming an AR(1) data generating process. Standard errors for the
empirical size may be computed using the usual normal approximation ; they are 9 .95 x 10-4 ,
2.18 x 10-3 , and 3.00 x 10_ 3 for the 1 %, 5 %, and 10 % tests respectively.

η

	

4
Size

	

Size

	

Size
Min

	

Max Mean S.D . 1%-Test 5%-Test 10%-Test

100

	

0

	

0.764 3.418

	

1.764 0.402

	

0.203

	

0.382

	

0.486
100

	

5

	

0.634 1.862

	

1 .201

	

0.220

	

0.003

	

0.027

	

0.059
100

	

10

	

0.693 1.805

	

1 .178

	

0.176

	

0.000

	

0.010

	

0.030
100

	

25

	

0.779 2.111

	

1 .290

	

0.175

	

0.000

	

0.005

	

0.015
100

	

50

	

0.879 3.013

	

1 .571

	

0.341

	

0.074

	

0.198

	

0.284
100

	

5.61

	

0.636 1 .974

	

1 .195

	

0.219

	

0.004

	

0.028

	

0.063
(1 .25)

250

	

0

	

0.865 3.720

	

1 .913 0.432

	

0.309

	

0.505

	

0.614
250

	

5

	

0.597 2.478 1 .268 0.262

	

0.005

	

0.038

	

0.086
250

	

10

	

0.615 2.137

	

1.212 0.228

	

0.003

	

0.023

	

0.063
250

	

25

	

0.734 1.811

	

1.218

	

0.177

	

0.000

	

0.004

	

0.015
250

	

50

	

0.809 2.119 . 1 .304 0.166

	

0.000

	

0.003

	

0.010
250

	

8.07

	

0.603 2.357

	

1.227 0.242

	

0.004

	

0.030

	

0.071
( 1 .07)

500

	

0

	

0.836 4.392

	

1.980 0.456

	

0.363

	

0.559

	

0.665

500

	

5

	

0.622 2 .557

	

1.302 0.285

	

0.012

	

0.055

	

0.109
500

	

10

	

0.579 2.297 1.236 0.256

	

0.007

	

0.039

	

0.085
500

	

25

	

0.627 1 .980

	

1.214 0.215

	

0.001

	

0.015

	

0.041
500

	

50

	

0.734 1 .894

	

1 .243 0.178

	

0.000

	

0.002

	

0.009
500 10.40

	

0.577 2.353

	

1.236 0.256

	

0.007

	

0.039

	

0.085
(0.99)

750

	

0

	

0.839 4.211

	

2.017 0.459

	

0.389

	

0.592

	

0.696
750

	

5

	

0.567 2.637

	

1.323

	

0.291

	

0.011

	

0.062

	

0.118
750

	

10

	

0.557 2.429

	

1.253 0.265

	

0.007

	

0.043

	

0.091

750

	

25

	

0.614 2.114

	

1.222 0.232

	

0.003

	

0.022

	

0.058
750

	

50

	

0.702 1.891

	

1.235 0.200

	

0.000

	

0.005

	

0.022
750 12.03

	

0.556 2.324

	

1.244 0.260

	

0.007

	

0.041

	

0.088
(0.93)

(continued)
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Table 6.Sb . (continued)

η

	

q Min Max Mean S.D .
Size

	

Size

	

Size

1%-Test 5%-Test 10%-Test

1000 0 0.926 4.327 2.045 0.465 0.414 0.617 0.716
1000

	

5

	

0.625 2.768

	

1 .340 0.296

	

0.014

	

0.065

	

0.125
1000

	

10

	

0.592 2.622

	

1 .268 0.272

	

0.009

	

0.047

	

0.096
1000

	

25

	

0.608 2.350

	

1 .231

	

0.244

	

0.004

	

0.030

	

0.072

1000

	

50

	

0.636 1 .997

	

1 .236 0.217

	

0.001

	

0.011

	

0.038
1000 13.30

	

0.590 2.548

	

1 .252

	

0.265

	

0.008

	

0.043

	

0.090

(0.89)

still exhibit reasonable power, ranging from 33 .1 percent in samples of 100
observations to 94 .5 percent in samples of 1,000 .

For the larger sample sizes the power again declines as the number of
lags increases, due to the denominator ~n (q), which declines as q increases
because the population autocorrelations are all negative when d = -

3
. The

resulting increase in the mean of Un (q)'s sampling distribution overwhelms
the increase in its variability, leading to a lower rejection rate from the left
tail .

Table 6.6a and b shows that the modified R/S statistic has reasonable
power against at least two specific models of long-term memory. However,
these simulations are merely illustrative-a more conclusive study would in-
clude further simulations with several other values for d, and perhaps with
short-range dependence as we11 .23 Moreover, since our empirical work has

23 The very fact that the modified R/ S statistic yields few rejections under the null simulations
of Section 6 .5 .1 shows that the test may have low power against some long-raπge dependent
alternatives, since the pseudo-random number generator used in those simulations is, after
all, a long-range dependent process. A more striking example is the "tent" map, a particularly
simple nonlinear deterministic map (it has a correlation dimension of 1) which yields sequences
that are virtually uncorrelated but long-range dependent . In particular, the tent map is given
by the following recursion :

2X_ 1

	

if X~_~ < 1
X, -

	

~

	

t = I, . . ., T,

	

Xo E (0,1) .
2(1 - X~-~) ~ X~-~ ? 2,

As an illustration, we performed two Monte Carlo experiments using the tent map to generate
samples of 500 and 1,000 observations (each with 10,000 replications) with an independent
uniform (0,1) starting value for each replication . Neither the Mandelbrot rescaled range,
nor its modification with fixed or automatic truncation lags have any power against the tent
map. In fact, the finite sample distributions are quite close to the null distribution . Of course,
one could argue that if the dynamics and the initial condition were unknown, then even if a
deterministic system were generating the data, the resulting time series would be short-raπge
dependent "for all practical purposes" and should be part of our null . We are grateful to Lars
Hansen for suggesting this analysis.
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Table 6.6a. Power of the modified R/S statistic under a Gaussian fractionally differenced
alternative with differencing parameter d = 1/3 . The variance of the process has been nor-
malized to unity. Each set of rows of a gwen sample size n corresponds to a separate and
independent Monte Carlo experiment based on 10, 000 replications . A lag q of 0 corresponds to
Mandelbrot's classical R/S statistic, and a noninteger lag value indicates the mean lag (stan-
dard deviation given in parentheses) chosen via Andrews' (1991) data-dependent procedure
assuming an AR(1) data generating process .

Power

	

Power

	

Power
n

	

q

	

Min

	

Max Mean S.D .

	

1%-Test 5%-Test 10%-Test

100

	

0

	

0.729 4.047 2.025 0.513

	

0.429

	

0.600

	

0.680
100

	

5

	

0.635 2.089

	

1.361

	

0.242

	

0.001

	

0.014

	

0.065
100

	

10

	

0.686 1 .746

	

1 .237 0.171

	

0.000

	

0.005

	

0.015
100

	

25

	

0.723 2.148

	

1.208 0.156

	

0.000

	

0.002

	

0.008
100

	

50

	

0.823 2.803

	

1 .399 0.328

	

0.035

	

0.096

	

0.154
100

	

4.27

	

0.650 2.330

	

1 .411

	

0.257

	

0.003

	

0.040

	

0.104
(1.43)

250

	

0

	

0.938 5.563 2.678 0.709

	

0.774

	

0.878

	

0.918
250

	

5

	

0.713 2.924

	

1.699 0.364

	

0.153

	

0.335

	

0.442
250

	

10

	

0.705 2.304

	

1 .475 0.277

	

0.006

	

0.091

	

0.186
250

	

25

	

0.681

	

1 .852

	

1 .264 0.175

	

0.000

	

0.003

	

0.012
250

	

50

	

0.756 1.971

	

1.208 0.140

	

0.000

	

0.002

	

0.007
250

	

6.63

	

0.711

	

2.596

	

1 .619

	

0.317

	

0.067

	

0.240

	

0.360
(1 .36)

500

	

0

	

1 .061 7.243 3.336 0.929

	

0.924

	

0.967

	

0.980
500

	

5

	

0.731 3.726 2.055 0.491

	

0.450

	

0.628

	

0.709
500

	

10

	

0.692 2.944 1 .750 0.384

	

0.197

	

0.385

	

0.494
500

	

25

	

0.623 2.164

	

1 .429 0.258

	

0.001

	

0.045

	

0.123
500

	

50

	

0.687 1 .763

	

1 .271

	

0.178

	

0.000

	

0.003

	

0 .009
500

	

8.96

	

0.709 3.201

	

1 .809 0.384

	

0.242

	

0.447

	

0.557
(1 .37)

750

	

0

	

1 .228 8.059 3.799

	

1 .052

	

0.972

	

0.990

	

0.995
750

	

5

	

0.838 4.280 2.313 0.565

	

0.620

	

0.766

	

0 .830
750

	

10

	

0.769 3.421

	

1.955 0.447

	

0.370

	

0.557

	

0.655
750

	

25

	

0.734 2.478

	

1.569 0.310

	

0.042

	

0.195

	

0.304
750

	

50

	

0.722 1 .925

	

1 .359 0.223

	

0.000

	

0.005

	

0.036
750

	

10.58

	

0.798 3.324

	

1.942

	

0.421

	

0.363

	

0.559

	

0.657
(1.33)

1000

	

0

	

1 .398 8.615

	

4.174

	

1 .174

	

0.985

	

0.996

	

0.998
1000

	

5

	

0.898 4.672 2.521

	

0.635

	

0.720

	

0.846

	

0.892
1000

	

10

	

0.779 3.766 2.121

	

0.504

	

0.494

	

0.669

	

0.747

(continued)
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Table 6.6a. (continued)

n

	

q

	

Min Max Mean S.D .

	

Power

	

Power

	

Power
1%-Test 5%-Test 10%-Test

1000

	

25

	

0.641 2.734

	

1 .686 0.354

	

0.135

	

0.322

	

0.431
1000

	

50

	

0.628 2.118

	

1 .441

	

0.259

	

0.001

	

0.052

	

0.138

1000 11.87

	

0.766 3.613 2.044 0.454

	

0.446

	

0.630

	

0.718
(1.31)

Table 6.6b . Power of the modified R/S statistic under a Gaussian fractionally differenced
alternative with differencing parameter d = -1/3 . The variance of the process has been
normalized to unity. Each set of rows of a given sample size n corresponds to a separate and
independent Monte Carlo experiment based on 10, 000 replications . A lag q of 0 corresponds to
Mandelbr~t's classical R/S statistic, and a noninteger lag value indicates the mean lag (stan-
dard deviation gwen in parentheses) chosen via Andrews' (1991) data-dependent procedure
assuming an AR (1) data-generating process.

η

	

4 Min Max Mean S.D.
Power

	

Power

	

Power
1%-Test 5%-Test 10%-Test

100

	

0

	

0.367 1.239 0.678 0.120

	

0.670

	

0.858

	

0.923
100

	

5

	

0.637 1.710

	

1.027 0.153

	

0.006

	

0.054

	

0.134
100

	

10

	

0.762 2.030

	

1.217 0.161

	

0.000

	

0.001

	

0.005
100

	

25

	

0.953 2.638

	

1.587 0.207

	

0.014

	

0.095

	

0.211
100

	

50

	

1 .052 3.478 2.033 0.354

	

0.425

	

0.679

	

0.785
100

	

2.94

	

0.478 1.621

	

0.889 0.155

	

0.131

	

0.331

	

0.466
(0.99)

250

	

0

	

0.303 1.014 0.561

	

0.089

	

0.951

	

0.991

	

Π.997
250

	

5

	

0.549 1.479 0.851

	

0.128

	

0.146

	

0.409

	

0.571

250

	

10

	

0.632 1.752

	

1.005

	

0.143

	

0.007

	

0.065

	

0.152
250

	

25

	

0.833 1.936

	

1.292 0.157

	

0.000

	

0.001

	

0.004
250

	

50

	

0.977 2.357 1.594 0.186

	

0.007

	

0.078

	

0.198
250

	

4.20

	

0.448 1 .437 0.796 0.129

	

0.301

	

0.578

	

0.716
(0.86)

500

	

0

	

0.292 0.819 0.479 0.071

	

0.997

	

1.000

	

1 .000
500

	

5

	

0.458 1 .244 0.728 0.105

	

0.517

	

0.794

	

0.888
500

	

10

	

0.555

	

1 .489 0.861

	

0.121

	

0.111

	

0.366

	

0.543
500

	

25

	

0.706 1 .735

	

1 .105 0.143

	

0.000

	

0.004

	

0.022
500

	

50

	

0.881

	

2.089

	

1.356 0.157

	

0.000

	

0.002

	

0.011
500

	

5.45

	

0.443 1 .318

	

0.725

	

0.108

	

0.529

	

0.793

	

0.887
(0.77)

(continued)
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η

	

4

Table 6.6b . (continued)

Min Max Mean S.D .
Power

	

Power

	

Power
1%-Test 5%-Test 10%-Test

750

	

0

	

0.276 0.700 0.433 0.063

	

1 .000

	

1 .000

	

1 .000

750

	

5

	

0.422 1 .070 0.659 0.094

	

0.764

	

0.932

	

0.973
750

	

10

	

0.499 1 .262 0.779 0.109

	

0.325

	

0.641

	

0.789

750

	

25

	

0.689 1 .570

	

1 .001

	

0.132

	

0.003

	

0.049

	

0.138

750

	

50

	

0.837 1 .802

	

1 .227 0.148

	

0.000

	

0.000

	

0.002
750

	

6.34

	

0.424 1 .133 0.682 0.099

	

0.679

	

0.892

	

0.951
(0.73)

1000

	

0

	

0.257 0.775 0.403 0.057

	

1 .000

	

1 .000

	

1.000

1000

	

5

	

0.401

	

1.149 0.613 0.085

	

0.895

	

0.978

	

0.993

1000 10 0.487 1.376 0.725 0.099 0.525 0.809 0.907
1000 25 0.633 1.596 0.930 0.121 0.020 0.154 0.306
1000

	

50

	

0.778 1.820

	

1.139 0.139

	

0.000

	

0.000

	

0.006
1000

	

7.01

	

0.412

	

1 .235

	

0.651

	

0.092

	

0.789

	

0.945

	

0.978
(0.70)

employed data sampled at different frequencies (implying different values
of d for different sample sizes), the trade-off between the time span of the
data and the frequency of observation for the test's power may be an im-
portant issue . Nevertheless, the simulation results suggest that short-range
dependence may be the more significant feature of recent stock market
returns .

6.6 Conclusion

Using a simple modification of the Hurst-Mandelbrot rescaled range that
accounts for short-term dependence, and contrary to previous studies, we
find little evidence of long-term memory in historical U .S. stock market

returns. If the source of serial correlation is lagged adjustment to new
information, the absence of strong dependence in stock returns should
not be surprising from an economic standpoint, given the frequency with
which financial asset markets clear. Surely financial security prices must
be immune to persistent informational asymmetries, especially over longer
time spans. Perhaps the fluctuations of aggregate economic output are
more likely to display such long-run tendencies, as Kondratiev and Kuznets
have suggested, and this long-memory in output may eventually manifest
itself in the return to equity. But if some form of long-range dependence
is indeed present in stock returns, it will not be easily detected by any of
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Table 6.6b. (continued)

Power

	

Power

	

Power
n

	

q

	

Min

	

Max Mean S.D . 1%-Test 5%-Test 10%-Test

750

	

0

	

0.276 0.700 0.433 0.063

	

1 .000

	

1 .000

	

1.000
750

	

5

	

0.422 1.070 0.659 0.094

	

0.764

	

0.932

	

0.973
750

	

10

	

0.499 1 .262 0.779 0.109

	

0.325

	

0.641

	

0.789
750

	

25

	

0.689 1 .570

	

1 .001

	

0.132

	

0.003

	

0.049

	

0.138
750

	

50

	

0.837 1 .802 1 .227 0.148

	

0.000

	

0.000

	

0.002
750

	

6.34

	

0.424 1 .133 0.682 0.099

	

0.679

	

0.892

	

0.951
(0.73)

1000 0 0.257 0.775 0.403 0.057 1.000 1.000 1 .000
1000

	

5

	

0.401

	

1 .149 0.613 0.085

	

0.895

	

0.978

	

0.993
1000 10 0.487 1.376 0.725 0.099 0.525 0.809 0.907
1000 25 0.633 1.596 0.930 0.121 0.020 0.154 0.306
1000

	

50

	

0.778 1.820

	

1.139 0.139

	

0.000

	

0.000

	

0.006
1000

	

7.01

	

0.412 1.235 0.651

	

0.092

	

0.789

	

0.945

	

0.978
(0.70)

employed data sampled at different frequencies (implying different values
of d for different sample sizes), the trade-off between the time span of the
data and the frequency of observation for the test's power may be an im-
portant issue. Nevertheless, the simulation results suggest that short-range
dependence may be the more significant feature of recent stock market
returns .

6.6 Conclusion

Using a simple modification of the Hurst-Mandelbrot rescaled range that
accounts for short-term dependence, and contrary to previous studies, we
find little evidence of long-term memory in historical U .S. stock market
returns. If the source of serial correlation is lagged adjustment to new
information, the absence of strong dependence in stock returns should
not be surprising from an economic standpoint, given the frequency with
which financial asset markets clear. Surely financial security prices must
be immune to persistent informational asymmetries, especially over longer
time spans. Perhaps the fluctuations of aggregate economic output are
more likely to display such long-run tendencies, as Kondratiev and Kuznets
have suggested, and this long-memory in output may eventually manifest
itself in the return to equity. But if some form of long-range dependence
is indeed present in stock returns, it will not be easily detected by any of
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our current statistical tools, especially in view of the optimality of the R/S
statistic in the Mandelbrot and Wallis (1969b) sense . Direct estimation of
particular parametric models may provide more positive evidence of long-
term memory and is currently being pursued by several investigators . 24

24See, for example, Boes et al. (1989), Diebold and Rudebusch (1989), Fox and Taqqu
(1986), Geweke and Porter-Hudak (1983), Porter-Hudak (1990), Sowell (1989, 1990), and
Yajima (1985, 1988) .



Appendix A6
Proof of Theorems

Proofs of the theorems rely on the following three lemmas :

LemmaA.l (Herrndorf (1984)) . If {~ t } satisfies assumptions (A1)-(A4) then as
n increases without bound, Wn(~) ~ W(~) .

Lemma A.2 (Extended Continuous Mapping Theorem) . 25 Let hn and h be me~sur-
able mappings from D [0, 1 ] to itself and denote by E the set of x E D [0, 1 ] such that
hn (xn ) ~ h(x)failstoholdforsomesequencex n convergingtox. IfWn(~) ~ W(~)
and E is of Wiener-measure zero, i.e ., P(W E E) = 0, then h n(Wn) ~ h(W) .

Lemma A.3. Let R12 ~ R where both Rn and R have nonnegative support, and let

P(R - 0) = P(R = oo) = 0 . If an ~ oo, then anR,, ~ oo. If an ~ 0, then
ńanR„~0 .

Proof of Theorem 6 .3.1

Let Sn = ~~ t ~~ and define the following function Yn(~) on D[0, 1]

Yn(i) _ ~~ s[nil+

	

~ E [0, 1],

	

(A6.1)

where [n~] denotes the greatest integer less than or equal to n~, and ~
is defined in condition (A3) of the null hypothesis . By convention, set
Yn (0) __ 0 . Under conditions (Al), (A2'), (A3), and (A4) Herrndorf (1984)

2`'See Billingsley (1968) for a proof .
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has shown that Yn (~) ~ W(~) . But consider :

1

	

k

Max	~(X - X n )
1<_k<n ~n(q)~ j=1

= Max

	

Sk - -Sn

	

(A6.2a)
~<_~<n ~n(q)~

	

n

= Max Zn(~)

	

(A6.2ó)
o<~<~

where

Zn(~) _- Yn(~) -
Lnil

Yn (1) .

	

(Á6.2c)
n

Since the sequence of functions hn that map Yn(~) to Zn(~) satisfies the
conditions of Lemma A .2, where the limiting mapping h takes Yn (~) to
Yn(~) - ~Yn (1), it may be concluded that

hn ~Yn (~)~ = Zn(~) ~ h~W(~)~ = W(~) - ~W(1) = W° (~) . (A6.3)

If the estimator ~n(q) is substituted in place of ~ in the construction of Zn(~),
then under conditions (A2') and (A5) , Theorem 4.2 of Phillips (1987) shows
that (A3) still obtains . The rest of the theorem follows directlyfrom repeated
application of Lemma A.2 .

	

Q.E.D.

Proof of Theorem 6 .3.2

See Davydov (1970) and Taqqu (1975) .

Proof of Theorem 6 .3.3

Parts (6.3.3)-(6 .3 .3) follow directly from Theorem 6 .3.2 and Lemma A.2,
and part (6.3.3) follows immediately from Lemma A.3. Therefore, we need
only prove (6.3 .3) . Let H ~ (2, 1) so that y(k) ^~ k2H-2L(k) . This implies
that

Var[Sn ] ^~ n2HL(n) .

	

(A6.4)

Therefore, to show that ~ n ~ oo, it suffices to show that

n2~2i~n)
~ 0.

	

(A6.5)

Consider the population counterpart to (A6.5) :

~ (q)

	

_

	

1

	

2
2

	

4

n2x-~L(n)

	

n2~~-~L(n) ~E + 2~~j yj

	

(A6 .6)
j-~
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where ~~ = 1 - j/(q + 1) . Since by assumption ~~ ti j2a-2L(j), there exists

some integer qa and M > 0 such that for j > qQ , ~~ < Mj2x-2L(j) . Now
it is well known that a slowly-varying function satisfies the inequality j -~ <

L(j) < j~ for any ~ > 0 and j > qb, for some qb(~) . Choose ~ < 2 - 2H, and

observe that

which implies :

Ε
~2 (q)

	

σ2 (q)
η2χ-ι

	

η2χ-ι

yj < Mj2H-2jε

= η2χ-ι Ε

ΕΙσΈ - σ2Ι
η2Η-ι

2

	

4

+η2Η_ι Σω~ ΕΙΎ; - Υ;Ι

	

(A6.lOb)
~-ι

j > qo =_ max(ga , qb)

	

(Α6.7)

9

	

~

	

9
2Σ ω~ y, < 2Σ ω~ y, +2Μ Σ ω~ j2Η-2

+ε

	

(Α6.8)
~=ι

	

~=ι

	

~=~ο+ι

where, without loss of generality, we have assumed that q > qo . As q increases
without bound, the first sum of the right-side of (A6 .8) remains finite, and
the second sum may be bounded by observing that its summands are positive
and decreasing, hence (see, for example, Buck, 1978, Chapter 5 .5) :

2Μ ~ ω~ j2Η-2+ε < 2Μ l4 C1
- χ ~ χ2Η-2+ε dx (Α6.9α)

ί=~ο+ι

	

~ο

	

q+ 1

,~, Ο(g2Η-1+ε)

	

(A6.9b)

where the asymptotic equivalence follows by direct integration . If q ^~ O(n~)
where ~ E (0, 1), a weaker condition than required by our null hypothesis,
then the ratio ~2(q)/(n2~-~L(n)) is at most of order O(n~2~-~+~)(s-~>) which

converges to zero. If we can now show that (A6.6) and its sample counterpart
are equal in probability, then we are done . This is accomplished by the
following sequence of inequalities :

4

(~~ - σΕ)+2Σωj(Υj - Yj)
~-ι

(Á6.10a)
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<
Ε~σΈ

-
σ2~

yL2N-1

2

	

4

+ η
2χ-ι ~ ω~ JΕ(γ~ - y~) 2 .

	

(Α6.10ε)
j=1

But since Hosking (1984, Theorem 2) provides rates of convergence for sam-
ple auto-covariances of stationary Gaussian processes satisfying (6.3.14), an
integral evaluation similar to that in (Á6 .9a) shows that the sum in (Á6 .10c)
vanishes asymptotically when q ^~ o(n) . This completes the proof. Since the
proof for H E (0, 2 ) is similar, it is left to the reader .

	

Q.E.D.
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